

NEET - UG

NTA

Chapterwise + Topicwise CHEMISTRY

 Previous

Questions with Video Solutions
\checkmark Aligned as per $11^{\text {th }} \&$ 12 $^{\text {th }}$ NCERT Books
\checkmark Physics + Chemistry + Biology

NEET PREVIOUS YEAR QUESTIONS

CHEMISTRY

Class - 11 ${ }^{\text {th }}$

S.N.	Chapter Name	P.N.
*	NEET (UG) - 2022 Chemistry Paper	1
1.	Some Basic Concepts of Chemistry - Uncertainty in Measurement - Laws of Chemical Combinations - Atomic and Molecular Masses - Mole Concept and Molar Masses - Percentage Composition - Stoichiometry and Stoichiometric Calculations	9
2.	Structure of Atom - Atomic Models - Developments Leading to the Bohr's Model of Atom - Bohr's Model for Hydrogen Atom - Towards Quantum Mechanical Model of the Atom - Quantum Mechanical Model of Atom	13
3.	Classification of Elements and Periodicity in Properties - Nomenclature of Elements with Atomic Numbers > 100 - Electronic Configurations of Elements and The Periodic Table - Periodic Trends in Properties of Elements	18
4.	Chemical Bonding and Molecular Structure - Kössel-Lewis Approach to Chemical Bonding - Bond Parameters - The Valence Shell Electron Pair Repulsion (VSEPR) Theory - Valence Bond Theory - Hybridisation - Molecular Orbital Theory - Bonding in Some Homonuclear Diatomic Molecules - Hydrogen Bonding	22
5.	States of Matter - Intermolecular Forces - The Gaseous State - The Gas Laws - Ideal Gas Equation - Kinetic Energy and Molecular Speeds	29

	- Kinetic Molecular Theory of Gases - Behaviour of Real Gases - Deviation from Ideal Gas Behaviour - Liquefaction of Gases - Liquid State	
6.	Thermodynamics - Thermodynamic Terms - Applications - Enthalpy Change, $\Delta_{r} H$ of a Reaction - Reaction Enthalpy - Enthalpies for Different Types of Reactions - Spontaneity	33
7.	Equilibrium - Law of Chemical Equilibrium and Equilibrium Constant - Homogeneous Equilibrium - Heterogeneous Equilibrium - Applications of Equilibrium Constant - Relationship Between K, Q and G - Factors Affecting Equilibrium - Ionic Equilibrium in Solution - Acids, Bases and Salts - Ionization of Acids and Bases - Buffer Solutions - Solubility Equilibrium of Sparingly Soluble Salts	40
8.	Redox Reactions - Redox Reactions in Terms of Electron Transfer Reactions - Oxidation Number - Redox Reactions and Electrode Processes	50
9.	Hydrogen - Dihydrogen, H_{2} - Preparation of Dihydrogen, H_{2} - Properties of Dihydrogen - Hydrides - Water - Hydrogen Peroxide ($\mathrm{H}_{2} \mathrm{O}_{2}$) - Heavy Water, $D_{2} \mathrm{O}$	52
10.	The s-Block Elements - Group 1 Elements : Alkali Metals - General Characteristics of the Compounds of the Alkali Metals - Anomalous Properties of Lithium - Some Important Compounds of Sodium - Biological Importance of Sodium and Potassium	54

$\left.\begin{array}{|l|l|l|}\hline & \text { - Group } 2 \text { Elements : Alkaline Earth Metals } \\ \text { - General Characteristics of Compounds of Alkaline Earth Metals } \\ \text { - Anomalous Behaviour of Beryllium } \\ \text { - Some Important Compounds of Calcium } \\ \text { - Biological Importance of Magnesium and Calcium }\end{array}\right]$

NEET PREVIOUS YEAR QUESTIONS

CHEMISTRY

	Class - 12 ${ }^{\text {th }}$	
S.N.	Chapter Name	P.N.
1.	The Solid State - Classification of Crystalline Solids - Crystal Lattice and Unit Cells - Number of Atoms in a Unit Cell - Closed Packed Structures - Packing Efficiency - Calculations Involving Unit Cell Dimensions - Imperfections in Solids - Electrical Properties	78
2.	Solutions - Expressing Concentration of Solutions - Vapour Pressure of Liquid Solutions - Ideal and Non-Ideal Solutions - Colligative Properties and Determination of Molar Mass - Abnormal Molar Masses	82
3.	Electrochemistry - Galvanic Cells - Nernst Equation - Conductance of Electrolytic Solutions - Electrolytic Cells and Electrolysis - Fuel Cells - Corrosion	87
4.	Chemical Kinetics - Rate of a Chemical Reaction - Factors Influencing Rate of a Reaction - Integrated Rate Equations - Temperature Dependence of the Rate of a Reaction - Collision Theory of Chemical Reactions	93
5.	Surface Chemistry - Adsorption - Catalysis - Classification of Colloids	100
6.	General Principles and Processes of Isolation of Elements - Occurrence of Metals	103

	- Concentration of Ores - Extraction of Crude Metal from Concentrated Ore - Thermodynamic Principles of Metallurgy - Electrochemical Principles of Metallurgy - Oxidation Reduction - Refining	
7.	The p-Block Elements - Group 15 Elements - Ammonia - Nitric Acid - Phosphorus - Allotropic Forms - Phosphine - Phosphorus Halides - Oxoacids of Phosphorus - Group 16 Elements - Dioxygen - Simple Oxides - Ozone - Sulphur Dioxide - Oxoacids of Sulphur - Sulphuric Acid - Group 17 Elements - Chlorine - Oxoacids of Halogens - Interhalogen Compounds - Group-18 Elements	106
8.	The d and f-Block Elements - Electronic Configurations of the d-Block Elements - General Properties of the Transition Elements (d-Block) - Some Important Compounds of Transition Elements - The Lanthanoids - The Actinoids - Some Applications of d-and f-Block Elements	112
9.	Coordination Compounds - Werner's Theory of Coordination Compounds - Definitions of Some Important Terms Pertaining to Coordination Compounds - Nomenclature of Coordination Compounds - Isomerism in Coordination Compounds - Bonding in Coordination Compounds	118

	- Bonding in Metal Carbonyls - Importance and Applications of Coordination Compounds	
10.	Haloalkanes and Haloarenes - Organic Compounds Nature of C-X Bond - Methods of Preparation of Haloalkanes - Chemical Reactions - Polyhalogen Compounds	125
11.	Alcohols, Phenols and Ethers - Classification - Alcohols and Phenols - Ethers	130
12.	Aldehydes, Ketones and Carboxylic Acids - Preparation of Aldehydes and Ketones - Chemical Reactions - I - Methods of Preparation of Carboxylic Acids - Physical Properties - Chemical Reactions - II - Derivatives of Carboxylic Acids	136
13.	Amines - Preparation of Amines - Chemical Reactions - I - Methods of Preparation of Diazonium Salts - Chemical Reactions - II - Other Nitrogen Containing Compounds	145
14.	Biomolecules - Carbohydrates - Proteins - Enzymes - Vitamins - Nucleic Acids - Hormones - Lipids	151
15.	Polymers - Types of Polymerisation Reactions - Biodegradable Polymers	157
16.	Chemistry in Everyday Life - Therapeutic Action of Different Classes of Drugs - Chemicals in Foods - Cleansing Agents	160

$*$	NEET (UG) - 2022 Chemistry Answer Key	162
$*$	Class $11^{\text {th }} \&$ Class $12^{\text {th }}$ Chemistry Answer Key	163

Dear Aspirant,
 Thank you for making the right decision by choosing ToppersNotes.

To use the QR codes in the book, Please follow the below steps :-

To install the app, scan the QR code with your mobile phone camera or Google Lens

To Login enter your phone number

ToppersNotes Exam Prepration app

Download the app from Google play store

Click on search Button

Choose your exam

Equilibrium

Law of Chemical Equilibrium and Equilibrium Constant

1998
Q. 292 If K_{1} and K_{2} are the respective equilibrium constants for the two reactions,
$\mathrm{XeF}_{6(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightarrow \mathrm{XeOF}_{4(g)}+2 \mathrm{HF}_{(g)}$
$\mathrm{XeO}_{4(g)}+\mathrm{XeF}_{6(g)}$

$$
\rightarrow \mathrm{XeOF}_{4(g)}+\mathrm{XeO}_{3} \mathrm{~F}_{2(g)}
$$

the equilibrium constant of the reaction,
$\mathrm{XeO}_{4(g)}+2 \mathrm{HF}_{(g)}+\mathrm{XeO}_{3} \mathrm{~F}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)}$, will be -
(a) K_{1} / K_{2}
(b) $K_{1} \cdot K_{2}$
(c) $K_{1} /\left(K_{2}\right)^{2}$
(d) K_{2} / K_{1}

2005

Q. 293 Equilibrium constants K_{1} and K_{2}, for the following equilibria :
$N O_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightleftharpoons \mathrm{NO}_{2(g)}$ and
$2 \mathrm{NO}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)}$
are related as
(a) $K_{2}=1 / K_{1}^{2}$
(b) $K_{2}=\mathrm{K}_{1}^{2}$
(c) $K_{2}=1 / K_{1}$
(d) $K_{2}=K_{1} / 2$

2008

Q. 294 The value of equilibrium constant of the reaction,
$H I_{(g)} \rightleftharpoons \frac{1}{2} H_{2(g)}+\frac{1}{2} I_{2(g)}$
is 8.0. The equilibrium constant of the reaction
$\boldsymbol{H}_{2(g)}+I_{2(g)} \rightleftharpoons 2 H I_{(g)}$ will be
(a) 16
(b) $1 / 8$
(c) $1 / 16$
(d) $1 / 64$

2009

Q. 295 The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are 1.5×10^{-5} and $4.5 \times$
10^{-10} respectively The equilibrium constant for the equilibrium,
$\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
(a) 3.0×10^{-5}
(b) 3.0×10^{-4}
(c) 3.0×10^{4}
(d) 3.0×10^{5}

2011

Q. 296 For the reaction,
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NO}_{(\mathrm{g})}$,
the equilibrium constant is K_{1}. The equilibrium constant is K_{2} for the reaction, $2 \mathrm{NO}{ }_{(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{2(g)}$
What is K for the reaction,
$\mathrm{NO}_{2(g)} \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2(g)}+\mathrm{O}_{2(g)}$
(a) $\frac{1}{2 K_{1} K_{2}}$
(b) $\frac{1}{4 K_{1} K_{2}}$
(c) $\left[\frac{1}{2 K_{1} K_{2}}\right]^{1 / 2}$
(d) $\frac{1}{K_{1} K_{2}}$

2012

Q. 297 Given that the equilibrium constant for the reaction,
$2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{SO}_{3(g)}$
has a value of 278 at a particular temperature. What is the value of the equilibrium constant for the following reaction at the same temperature ?
$\boldsymbol{S O}_{3(g)} \rightleftharpoons \boldsymbol{S O}_{2(g)}+\frac{1}{2} \boldsymbol{O}_{2(g)}$
(b) 1.8×10^{-3}
(b) 3.6×10^{-3}
(c) 6.0×10^{-2}
(d) 1.3×10^{-5}
Q. 298 Given the reaction between 2 gases represented by
A_{2} and B_{2} to give the compound $A B_{(g)} \cdot A_{2(g)}+B_{2(g)} \rightleftharpoons 2 A B_{(g)}$
At equilibrium, the concentration of
$A_{2}=3.0 \times 10^{-3} M$, of $B_{2}=4.2 \times$
$10^{-3}-M$, of $A B=2.8 \times 10^{-3} M$
If the reaction takes place in a sealed vessel at $527^{\circ} \mathrm{C}$, then the value of K_{c} will be
(a) 2.0
(b) 1.9
(C) 0.62
(d) 4.5

2015

Q. 299 If the equilibrium constant for
$\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftharpoons 2 \mathrm{NO}_{(g)}$ is K , the equilibrium constant for $\frac{1}{2} \quad N_{2(g)}+$ $\frac{1}{2} O_{2(g)} \rightleftharpoons N O_{(g)}$ will be
(a) $\frac{1}{2} K$
(b) K
(c) K^{2}
(d) $K^{1 / 2}$

2017

Q. 300 The equilibrium constants of the following are -
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} ; \mathrm{K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} ; \mathrm{K}_{2}$
$\mathrm{H}_{\mathbf{2}}+\frac{\mathbf{1}}{\mathbf{2}} \mathrm{O}_{\mathbf{2}} \rightleftharpoons \mathrm{H}_{\mathbf{2}} \mathrm{O} ; \mathrm{K}_{\mathbf{3}}$
The equilibrium constant (K) of the reaction:
$2 \mathrm{NH}_{3}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ will be -
(a) $K_{2} K_{3}^{3} / K_{1}$
(b) $K_{2} K_{3} / K_{2}$
(c) $K_{2}^{3} K_{3} / K_{1}$
(d) $K_{1} K_{3}^{3} / K_{2}$

Homogeneous Equilibrium

2008
Q. 301 The dissociation equilibrium of a gas $A B_{2}$ can be represented as:
$\mathbf{2 A B}_{2(g)} \rightleftharpoons \mathbf{2 A B}(g)+B_{2(g)}$
The degree of dissociation is x and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant K_{p} and total pressure \mathbf{P} is
(a) $\left(2 K_{p} / P\right)^{1 / 2}$
(b) $\left(K_{p} / P\right)$
(c) $\left(2 K_{p} / P\right)$
(d) $\left(2 K_{p} / P\right)^{1 / 3}$
Q. 302 The values of $K_{p 1}$ and $K_{p 2}$ for the reactions,
$X \rightleftharpoons Y+Z$
$A \rightleftharpoons 2 B$
are in the ratio $9: 1$. If degree of dissociation of X and A be equal, then total pressure at equilibrium (i) and (ii) are in the ratio
(a) $36: 1$
(b) $1: 1$
(c) $3: 1$
(d) $1: 9$

2010

Q. 303 The reaction, $2 A_{(g)}+B_{(g)} \rightleftharpoons 3 C_{(g)}+$ $D_{(g)}$ is begun with the concentrations of A and B both at an initial value of 1.00 M . When equilibrium is reached, the concentration of D is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression
(a) $\left[(0.75)^{3}(0.25)\right] \div\left[(1.00)^{2}(1.00)\right]$
(b) $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.75)\right]$
(c) $\left[(0.75)^{3}(0.25)\right] \div\left[(0.50)^{2}(0.25)\right]$
(d) $\left[(0.75)^{3}(0.25)\right] \div\left[(0.75)^{2}(0.25)\right]$

Heterogeneous Equilibrium

2000
Q. 304 Equilibrium constant K for following reaction
$\mathrm{MgCO}_{3(s)} \rightleftharpoons \mathrm{M}_{g o(s)}+\mathrm{CO}_{2(g)}$
(a) $K_{p}=P_{C O 2}$
(b) $\mathrm{K}_{\mathrm{p}}=\mathrm{P}_{\mathrm{co}_{2}} \times \frac{\mathrm{P}_{\mathrm{co}_{2}} \times \mathrm{P}_{\mathrm{mgo}}}{\mathrm{P}_{\mathrm{mgCo}_{3}}}$
(c) $K_{p}=\frac{\mathrm{P}_{\mathrm{co}_{2}}+\mathrm{P}_{\mathrm{mgo}}}{\mathrm{P}_{\mathrm{mgco}_{3}}}$
(d) $K_{p}=\frac{\mathrm{P}_{\mathrm{mgco}_{3}}}{\mathrm{P}_{\mathrm{co}_{2}}+\mathrm{P}_{\mathrm{mgo}}}$

2008

Q. 305 If the concentration of OH^{-}ions in the reaction
$\mathrm{Fe}(\mathrm{OH})_{3(s)} \rightleftharpoons \mathrm{Fe}_{(a q)}^{3+}+\mathbf{3 O H}_{(a q)}^{-}$
is decreased by $1 / 4$ times, then equilibrium concentration of Fe^{3+} will increase by
(a) 64 times
(b) 4 times
(c) 8 times
(d) 16 times.

2010

Q. 306 In which of the following equilibrium K_{c} and K_{p} are not equal ?
(a) $2 \mathrm{NO}_{(g)} \rightleftharpoons \mathrm{N}_{2(g)}+\mathrm{O}_{2(g)}$
(b) $\mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)} \rightleftharpoons \mathrm{SO}_{3(g)}+\mathrm{NO}_{(g)}$
(c) $H_{2(g)}+I_{2(g)} \rightleftharpoons 2 H I_{(g)}$
(d) $2 C_{(s)}+O_{2(g)} \rightleftharpoons 2 \mathrm{CO}_{2(g)}$

2017

Q. 307 A 20 litre container at 400 K contains $\mathrm{CO}_{2(\mathrm{~g})}$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid Sro). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be -
(Given that : $\mathrm{SrCO}_{3(g)} \rightleftharpoons \mathrm{SrO}_{(s)}+$ $\left.\mathrm{CO}_{2(\mathrm{~g})}, K_{p}=1.6 \mathrm{~atm}\right)$
(a) 10 litre
(b) 4 litre
(c) 2 litre
(d) 5 litre

Applications of Equilibrium Constant

2003

Q. 308 In Haber process, 30 litres of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end ?
(a) 20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen
(b) 10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
(c) 20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen
(d) 20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
Q. 309 The reaction quotient (Q) for the reaction $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ is given by
$Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$ The reaction will proceed from right to left if
(a) $Q=K_{c}$
(b) $Q<K_{c}$
(c) $Q>K_{c}$
(d) $Q=0$
where K_{c} is the equilibrium constant.

2015

Q. 310 If the value of equilibrium constant for a particular reaction is 1.6×10^{12}, then at equilibrium the system will contain
(a) Mostly products
(b) Similar amounts of reactants and products
(c) All reactants
(d) Mostly reactants.

Relationship Between K, Q and G

2010

Q. 311 Match List I (Equations) with List II (Type of processes) and select the correct option. List I (Equations) List II (Type of processes).
A. $K_{p}>Q$
(i) Non-spontaneous
B. $\Delta G^{\circ}<\mathrm{RT} \ln \mathrm{Q}$
(ii) Equilibrium
C. $K_{p}=\mathrm{Q}$
(iii) Spontaneous and endothermic
D. $T>\frac{\Delta H}{\Delta S}$
(iv) Spontaneous
(a) A - (i), B - (ii), C- (iii), D - (iv)
(b) A - (iii), B - (iv), C - (ii), D - (i)
(c) A - (iv), B - (i), C- (ii), D - (iii)
(d) A - (ii), B - (i), C - (iv), D - (iii)

2015

Q. 312 Which of the following statements is correct for a reversible process in a state of equilibrium ?
(a) $\Delta G^{\circ}=-2.30 R T \log K$
(b) $\Delta G^{\circ}=2.30 R T \log K$
(c) $\Delta G=-2.30 R T \log K$
(d) $\Delta G=2.30 R T \log K$

2020

Q. 313 Hydrolysis of sucrose is given by the following reaction : Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ Glucose + Fructose If the equilibrium constant (K_{C}) is 2×10^{13} at 300 K , the value of ΔG° at the same temperature will be
(a) $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times$

$$
\operatorname{In}\left(2 \times 10^{13}\right)
$$

(b) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times$

$$
\operatorname{In}\left(2 \times 10^{13}\right)
$$

(c) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times$ $\operatorname{In}\left(3 \times 10^{13}\right)$
(d) $-8.314 \mathrm{jmol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times$ $\operatorname{In}\left(4 \times 10^{13}\right)$

Factors Affecting Equilibrium

2000

Q. 314 For any reversible reaction, if we increase concentration of the reactants, then effect on equilibrium constant-
(a) Depends on amount of concentration
(b) Unchange
(c) Decrease
(d) Increase

2002

Q. 315 Reaction

$$
\mathrm{BaO}_{2(s)} \rightleftharpoons B a O_{(s)}+
$$

$O_{2(g)} ; \Delta H=+v e . \quad$ In equilibrium condition, pressure of O_{2} depends on
(a) Increase mass of BaO_{2}
(b) Increase mass of BaO
(c) Increase temperature on equilibrium
(d) Increase mass of BaO_{2} and BaO both

2006

Q. 316 For the reaction :
$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ $\Delta H_{r}=-170.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Which of the following statements is not true ?
(a) The reaction is exothermic.
(b) At equilibrium, the concentrations of $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are not equal.
(c) The equilibrium constant for the reaction is given by $K_{(p)}=\frac{\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{O}_{2}\right]}$.
(d) Addition of $\mathrm{CH}_{4(\mathrm{~g})}$ or $\mathrm{O}_{2(\mathrm{~g})}$ at equilibrium will cause a shift to the right

2011

Q. 317 The value of $\Delta \mathrm{H}$ for the reaction $X_{2(g)}+4 Y_{2(g)}=2 X Y_{4(g)}$ is less than zero.
Formation of $X Y_{4(g)}$ will be favoured at
(a) High temperature and high pressure
(b) Low pressure and low temperature
(c) High temperature and low pressure
(d) High pressure and low temperature

2013

Q. $318 \mathrm{KMnO}_{4}$ can be prepared from $\mathrm{K}_{2} \mathrm{MnO}_{4}$, as per the reaction, $3 \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \rightleftharpoons$ $2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+\mathbf{4 0 H ^ { - }}$
The reaction can go to completion by removing OH^{-}ions by adding
(a) CO_{2}
(b) SO_{2}
(c) HCl
(d) KOH

2014

Q. 319 For the reversible reaction,
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+$ heat
The equilibrium shifts in forward direction
(a) By increasing the concentration of $\mathrm{NH}_{3(\mathrm{~g})}$
(b) By decreasing the pressure
(c) By decreasing the concentrations of $\mathrm{N}_{2(\mathrm{~g})}$ and $\mathrm{H}_{2(\mathrm{~g})}$
(d) By increasing pressure and decreasing temperature.
Q. 320 For a given exothermic reaction, K_{P} and K_{P} are the equilibrium constants at temperatures T_{1} and T_{2}, respectively. Assuming that heat of reaction is constant in temperature range between T_{1}, and T_{2}, it is readily observed that
(a) $K_{P}>K_{P}^{\prime}$
(b) $K_{P}<K_{P}^{\prime}$
(c) $K_{P}=K_{P}^{\prime}$
(d) $K_{P}=\frac{1}{K^{\prime}{ }_{P}}$

2018

Q. 321 Which one of the following conditions will favour maximum formation of the product in the reaction
$\boldsymbol{A}_{\mathbf{2}(\mathrm{g})}+\boldsymbol{B}_{\mathbf{2 (g)}} \rightleftharpoons \boldsymbol{X}_{\mathbf{2 (g)},}, \Delta_{r} \boldsymbol{H}=-\boldsymbol{X} \boldsymbol{k J}$?
(a) Low temperature and high pressure
(b) Low temperature and low pressure
(c) High temperature and high pressure
(d) High temperature and low pressure

Ionic Equilibrium in Solution

2015

Q. 322 Aqueous solution of which of the following compounds is the best conductor of electric current ?
(a) Hydrochloric acid, HCI
(b) Ammonia, NH_{3}
(c) Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(d) Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Acids, Bases and Salts

1998

Q. 323 Repeated use of which one of the following fertilizers would increase the acidity of the soil ?
(a) Ammonium sulphate
(b) Superphosphate of lime
(c) Urea
(d) Potassium nitrate

1999
Q. 324 The strongest conjugate base is
(a) SO_{4}^{2-}
(b) Cl^{-}
(c) NO_{3}^{-}
(d) $\mathrm{CH}_{3} \mathrm{COO}^{-}$

2000

Q. 325 Conjugate acid of NH_{2}^{-}is
(a) $\mathrm{NH}_{4} \mathrm{OH}$
(b) NH_{4}^{+}
(c) NH_{2}^{-}
(d) NH_{3}
Q. 326 Which compound is electron deficient?
(a) BeCl_{2}
(b) $B C l_{3}$
(c) CCl_{4}
(d) PCl_{5}

2001

Q. 327 In $\mathrm{HS}^{-}, I^{-}, R-N H_{2}, N H_{3}$ order of proton accepting tendency will be
(a) $\mathrm{I}^{-}>\mathrm{NH}_{3}>\mathrm{R}-\mathrm{NH}_{2}>\mathrm{HS}^{-}$
(b) $\mathrm{NH}_{3}>\mathrm{R}-\mathrm{NH}_{2}>\mathrm{HS}^{-}>\mathrm{I}^{-}$
(c) $\mathrm{R}-\mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{HS}^{-}>\mathrm{I}^{-}$
(d) $\mathrm{HS}^{-} \mathrm{R}-\mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{I}^{-}$

2003

Q. 328 Which one of the following statements is not true ?
(a) Among halide ions, iodide is the most powerful reducing agent.
(b) Fluorine is the only halogen that does not show a variable oxidation state.
(c) HOCl is a stronger acid than HOBr .
(d) HF is a stronger acid than HCl .
Q. 329 Which one of the following compounds is not a protonic acid?
(a) $\mathrm{B}(\mathrm{OH})_{3}$
(b) $\mathrm{PO}(\mathrm{OH})_{3}$
(c) $\mathrm{SO}(\mathrm{OH})_{2}$
(d) $\mathrm{SO}_{2}(\mathrm{OH})_{2}$

2009

Q. 330 Which of the following molecules acts as a Lewis acid?
(a) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$
(C) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(d) $\left(\mathrm{CH}_{3}\right)_{3} B$

2010

Q. 331 Which one of the following molecular hydrides acts as a Lewis acid ?
(a) NH_{3}
(b) $\mathrm{H}_{2} \mathrm{O}$
(c) $B_{2} H_{6}$
(d) CH_{4}

2013

Q. 332 Which of these is least likely to act as a Lewis base ?
(a) $B F_{3}$
(b) $P F_{3}$
(c) CO
(d) F^{-}
Q. 333 Which is the strongest acid in the following?
(a) HClO_{4}
(b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(d) HClO_{3}

2016

Q. 334 Which of the following fluoro-compounds is most likely to behave as a Lewis base ?
(a) $B F_{3}$
(b) $P F_{3}$
(c) $C F_{4}$
(d) SiF_{4}

2019

Q. 335 Conjugate base for Bronsted acids $\mathrm{H}_{2} \mathrm{O}$ and HF are
(a) $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{H}_{2} \mathrm{~F}^{+}$respectively
(b) OH^{-}and $\mathrm{H}_{2} \mathrm{~F}^{+}$respectively
(c) $\mathrm{H}_{3} \mathrm{O}^{+}$and F^{-}respectively
(d) OH^{-}and F^{-}respectively.
Q. 336 Which of the following cannot act both as Bronsted acid and as Bronsted base ?
(a) HCO_{3}^{-}
(6) NH_{3}
(c) HCl
(d) HSO_{4}^{-}

Ionization of Acids and Bases

1999
Q. 337 The concentration of $\left[H^{+}\right]$and concentration of $\left[\mathrm{OH}^{-}\right.$] of a 0.1 aqueous solution of 2% ionised weak acid is (ionic product of water $=1 \times \mathbf{1 0}^{-14}$)
(a) $2 \times 10^{-3} \mathrm{M}$ and $5 \times 10^{-12} \mathrm{M}$
(b) $1 \times 10^{-3} \mathrm{M}$ and $3 \times 10^{-11} \mathrm{M}$
(c) $0.02 \times 10^{-3} \mathrm{M}$ and $5 \times 10^{-1} \mathrm{M}$
(d) $3 \times 10^{-2} \mathrm{M}$ and $4 \times 10^{-13} \mathrm{M}$

2000

Q. 338 Correct relation between dissociation constants of a dibasic acid is
(a) $\mathrm{K}_{\mathrm{a}_{1}}=\mathrm{K}_{\mathrm{a}_{2}}$
(b) $\mathrm{K}_{\mathrm{a}_{1}}<\mathrm{K}_{\mathrm{a}_{2}}$
(c) $\mathrm{K}_{\mathrm{a}_{1}}>\mathrm{K}_{\mathrm{a}_{2}}$
(d) $K_{a 1}=\frac{1}{K_{a 2}}$
Q. 339 Which statement is wrong about pH and H^{+}?
(a) pH of neutral water is not zero.
(b) Adding 1 N solution of $\mathrm{CH}_{3} \mathrm{COOH}$ and IN solution of NaOH , pH will be seven.
(c) $\left[\mathrm{H}^{+}\right]$of dilute and hot $\mathrm{H}_{2} \mathrm{SO}_{4}$ is more than concentrated and cold $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(d) Mixing solution of $\mathrm{CH}_{3} \mathrm{COOH}$ and HCl , pH will be less than 7.

2001

Q. 340 Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.7 \times$ 10^{-5} and concentration of H^{+}ions is 3.4×10^{-4}. Then find out initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules.
(a) 3.4×10^{-4}
(b) 3.4×10^{-3}
(c) 6.8×10^{-4}
(d) 6.8×10^{-3}

2002

Q. 341 Which has highest pH ?
(a) $\mathrm{CH}_{3} \mathrm{COOK}$
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) $\mathrm{NH}_{4} \mathrm{Cl}$
(d) NaNO_{3}

2005

Q. 342 At $25^{\circ} \mathrm{C}$, the dissociation constant of a base, $\quad \mathrm{BOH}, \quad$ is 1.0×10^{-12} The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be
(a) $1.0 \times 10^{-5} \mathrm{~mol}^{-1}$
(b) $1.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
(c) $2.0 \times 10^{-6} \mathrm{~mol}^{-1}$
(d) $1.0 \times 10^{-7} \mathrm{~mol} L^{-1}$

2006

Q. 343 The hydrogen ion concentration of a $\mathbf{1 0}^{\mathbf{- 8}}$ M HCl aqueous solution at $298 \mathrm{~K}\left(\mathrm{~K}_{\mathrm{w}}=\right.$ 10^{-14}) is
(a) $1.0 \times 10^{-8} \mathrm{M}$
(b) $1.0 \times 10^{-6} \mathrm{M}$
(c) $1.0525 \times 10^{-7} \mathrm{M}$
(d) $9.525 \times 10^{-8} \mathrm{M}$

2007

Q. 344 A weak acid, HA, has a K_{a} of $1.00 \times$ 10^{-5}. If 0.100 mol of this acid is dissolved in one litre of water, the percentage of acid dissociated at equilibrium is closest to
(a) 1.00%
(b) 99.9%
(c) 0.100%
(d) 99.0%
Q. 345 Calculate the pOH of a solution at $25^{\circ} \mathrm{C}$ that contains $1 \times \mathbf{1 0}^{-10} \mathbf{M}$ of hydronium ions, i.e. $\mathrm{H}_{3} \mathrm{O}^{+}$.
(a) 4.000
(b) 9.000
(c) 1.000
(d) 7.000

2008

Q. 346 Equal volumes of three acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the \mathbf{H}^{+}ion concentration in the mixture ?
(a) $3.7 \times 10^{-3} \mathrm{M}$
(b) $1.11 \times 10^{-3} \mathrm{M}$
(c) $1.11 \times 10^{-4} \mathrm{M}$
(d) $3.7 \times 10^{-4} \mathrm{M}$

2009

Q. 347 The ionization constant of ammonium hydroxide is 1.77×10^{-5} at 298 K . Hydrolysis constant of ammonium chloride is -
(a) 6.50×10^{-12}
(b) 5.65×10^{-13}
(c) 5.65×10^{-12}
(d) 5.65×10^{-10}
Q. 348 What is the [OH^{-}] in the final solution prepared by mixing $\mathbf{2 0 . 0} \mathbf{~ m L}$ of 0.050 M HCl with $\mathbf{3 0 . 0} \mathbf{~ m L}$ of $\mathbf{0 . 1 0} \mathbf{M ~ B a}(O H)_{2}$?
(a) 0.40 M
(b) 0.0050 M
(c) 0.12 M
(d) 0.10 M

2010

Q. 349 What is $\left(\mathrm{H}^{+}\right)$in mol/L of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.10 M in $\mathrm{CH}_{3} \mathrm{COOH}$? $\quad\left(\mathrm{K}_{a}\right.$ for $\mathrm{CH}_{3} \mathrm{COOH}=$ 1.8×10^{-5})
(a) 3.5×10^{-4}
(b) 1.1×10^{-5}
(c) 1.8×10^{-5}
(d) 9.0×10^{-6}

2012

Q. 350 Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest pH value ?
(a) $B a C l_{2}$
(b) AlCl_{3}
(c) LiCl
(d) BeCl_{2}

2013

Q. 351 Accumulation of lactic acid ($\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$), a monobasic acid in tissues leads to pain and a feeling of fatigue. In a 0.10 M aqueous solution, lactic acid is 3.7% dissociated. The value of dissociation constant, $K_{\boldsymbol{a}}$, for this acid will be
(a) 1.4×10^{-5}
(b) 1.4×10^{-4}
(c) 3.7×10^{-4}
(d) 2.8×10^{-4}
Q. 352 At $100^{\circ} \mathrm{C}$ the K_{w} of water is 55 times its value at $25^{\circ} \mathrm{C}$. What will be the pH of neutral solution ? $(\log 55=1.74)$
(a) 7.00
(b) 7.87
(c) 5.13
(d) 6.13

2014

Q. 353 Which of the following salts will give highest pH in water ?
(a) KCl
(b) NaCl
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) CuSO_{4}

2015

Q. 354 What is the pH of the resulting solution when equal volumes of 0.1 M NaOH and 0.01 M HCl are mixed ?
(a) 2.0
(b) 7.0
(c) 1.04
(d) 12.65

2016

Q. 355 The percentage of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ that forms pyridinium ion $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}\right)$ in a 0.10 M aqueous pyridine solution (K_{b} for $C_{5} H_{5} N=1.7 \times 10^{-9} J$ is
(a) 0.0060%
(b) 0.013%
(c) 0.77%
(d) 1.6%

2018

Q. 356 Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations :
A. $60 m L \frac{M}{10} \mathrm{HCl}+40 m L \frac{M}{10} \mathrm{NaOH}$
B. $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
C. $75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}$
D. $100 m L \frac{M}{10} H C l+100 m L \frac{M}{10} N a O H$
pH of which one of them will be equal to 1 ?
(a) B
(b) A
(c) D
(d) C

2019

Q. 357 The pH of $0.01 \mathrm{M} \mathrm{NaOH}_{(a q)}$ solution will be
(a) 7.01
(b) 2
(c) 12
(d) 9

The p-Block Elements

Group 15 Elements

1999
Q. 855 Which of the following oxides is most acidic?
(a) $\mathrm{As}_{2} \mathrm{O}_{5}$
(b) $\mathrm{P}_{2} \mathrm{O}_{5}$
(c) $\mathrm{N}_{2} \mathrm{O}_{5}$
(d) $\mathrm{Sb}_{2} \mathrm{O}_{5}$

2001

Q. 856 Nitrogen forms N_{2}, but phosphorus does not form P_{2}, however, it converts P_{4} reason is
(a) Triple bond present between phosphorus atom
(b) $P \pi-P \pi$ bonding is weak
(c) $P \pi-P \pi$ bonding is strong
(d) Multiple bonds form easily.

2012

Q. 857 In which of the following compounds, nitrogen exhibits highest oxidation state?
(a) $\mathrm{N}_{2} \mathrm{H}_{4}$
(b) NH_{3}
(c) $\mathrm{N}_{3} \mathrm{H}$
(d) $\mathrm{NH}_{2} \mathrm{OH}$

Ammonia

Q. 858 Urea reacts with water to form A which will decompose to form B. B when passed through $C u_{a q}^{2+}$ deep blue colour solution C is formed. What is the formula of \mathbf{C} from the following ?
(a) CuSO_{4}
(b) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(c) $\mathrm{Cu}(\mathrm{OH})_{2}$
(d) Cuco, $\mathrm{Cu}(\mathrm{OH})_{2}$

Nitric Acid

2016
Q. 859 When copper is heated with conc. HNO_{3} it produces
(a) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{NO}$ and NO_{2}
(b) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{N}_{2} \mathrm{O}$
(c) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and NO_{2}
(d) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ and NO

2002

Q. 860 Zn gives H_{2} gas with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl but not with HNO_{3} because
(a) Zn act as oxidising agent when react with HNO_{3}
(b) HNO_{3} is weaker acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl
(c) in electrochemical series Zn is above hydrogen
(d) NO_{3}^{-}is reduced in preference to hydronium

Phosphorus - Allotropic Forms

1999
Q. 861 Which of the following phosphorus is the most reactive ?
(a) Scarlet phosphorus
(b) White phosphorus
(c) Red phosphorus
(d) Violet phosphorus

Phosphine

2019
Q. 862 A compound ' X ' upon reaction with $\mathrm{H}_{2} \mathrm{O}$ produces a colourless gas ' Y ' with rotten fish smell Gas ' Y ' is absorbed in a solution of CuSO_{4} to give $\mathrm{Cu}_{3} \mathrm{P}_{2}$ as one of the products. Predict the compound
(a) $\mathrm{Ca}_{3} \mathrm{P}_{2}$
(b) $\mathrm{NH}_{4} \mathrm{Cl}$
(c) $\mathrm{As}_{2} \mathrm{O}_{3}$
(d) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Phosphorus Halides

Q. 863 Identify the incorrect statement
related to PCl_{5} from the following
(a) PC_{5} molecule is non-reactive.
(b) Three equatorial $\mathrm{P}-\mathrm{Cl}$ bonds make an
angle of 120° with each other
(c) Two axial $\mathrm{P}-\mathrm{Cl}$ bonds make an angle of
180° with each other.
(d) Axial $\mathrm{P}-\mathrm{Cl}$ bonds are longer than
equatorial $\mathrm{P}-\mathrm{Cl}$ bonds.

Oxoacids of Phosphorus
2010

Q. 864 Oxidation states of P in
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6} . \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ are respectively
(a) $+3,+5,+4$
(b) $+5,+3,+4$
(c) $+5,+4,+3$
(d) $+3,+4,+5$
Q. 865 How many bridging oxygen atoms are present in $\mathrm{P}_{4} \mathrm{O}_{10}$?
(a) 6
(b) 4
(c) 2
(d) 5

2012

Q. 866 Which of the following statements is not valid for oxoacids of phosphorus?
(a) Orthophosphoricacid is used in the manufacture of triple superphosphate.
(b) Hypophosphorous acid is a diprotic acid.
(c) All Otoacids contain tetrahedral four coordinated phosphorus.
(d) All oxoacids contain atleast one $\mathrm{P}=\mathrm{O}$ unit and one $\mathrm{P}-\mathrm{OH}$ group

2015

Q. 867 Strong reducing behaviour of $\mathrm{H}_{3} \mathrm{PO}_{2}$ is due to
(a) High electron gain enthalpy of phosphorus.
(b) High oxidation state of phosphorus.
(c) Presence of two -OH groups and one PH bond.
(d) Presence of one -OH group and two $\mathrm{P}-\mathrm{H}$ bonds.

2016

Q. 868 Which is the correct statement for the given acids ?
(a) Phosphinic acid is a monoprotic acid while phosphonic acid is a diprotic acid.
(b) Phosphinic acid is a diprotic acid while phosphonic acid is a monoprotic acid.
(c) Both are diprotic acids.
(d) Both are triprotic acids.

2019

Q. 869 Which of the following oxoacids of phosphorus has strongest reducing property ?
(a) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
(b) $\mathrm{H}_{3} \mathrm{PO}_{3}$
(c) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{4}$
 solutions increases in the order
(a) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
(b) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Te}$
(c) $\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}$
(d) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{~S}$

2019

Q. 871 Which is the correct thermal stability order for $\mathrm{H}_{2} \mathrm{E}(\mathrm{E}=\mathrm{O}, \mathrm{S}, \mathrm{Se}, \mathrm{Te}$ and Po$)$?
(a) $\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}$
(b) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
(c) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Po}$
(d) $\mathrm{H}_{2} \mathrm{Po}<\mathrm{H}_{2} \mathrm{Te}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{O}$ s

Dioxygen

2013

Q. 872 Which of the following does not give oxygen on healing ?
(a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(c) KClO_{3}
(d) $\mathrm{Zn}\left(\mathrm{ClO}_{3}\right)_{2}$

Group 17 Elements

2000

Q. 881 Which statement is wrong?
(a) Bond energy of $\mathrm{F}_{2}>\mathrm{Cl}_{2}$
(b) Electronegativity of $\mathrm{F}>\mathrm{Cl}$
(c) F is more oxidising than Cl
(d) Electron affinity of $\mathrm{Cl}>\mathrm{F}$

2006

Q. 882 Which one of the following orders is not in accordance with the property stated against it ?
(a) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Bond dissociation energy
(b) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Oxidising power
(c) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$: Acidic property in water
(d) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$:, Electronegativity
Q. 883 Which one of the following
arrangements does not give the
correct picture of the trends indicated
against it?
(a) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$:Bond dissociation energy
(b) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Electronegativity
(c) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$: Oxidizing power
(d) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$, : Electron gain enthalpy

2009

Q. 884 Among the following which is the strongest oxidising agent ?
(a) Br_{2}
(b) I_{2}
(c) Cl_{2}
(d) F_{2}

2015

Q. 885 The variation of the boiling points of the hydrogen halides is in the order $\mathrm{HF}>\mathrm{HI}>$ $\mathrm{HBr}>\mathrm{HCl}$ What explains the higher boiling point of hydrogen fluoride?
(a) There is strong hydrogen bonding between HF molecules.
(b) The bond energy of HF molecules is greater than in other hydrogen halides.
(c) The effect of nuclear shielding is much reduced in fluorine which polarises the HF molecule.
(d) The electronegativity of fluorine is much higher than for other elements in the group

2016

Q. 886 Which one of the following orders is correct for the bond dissociation enthalpy of halogen molecules ?
(a) $\mathrm{Br}_{2}>\mathrm{I}_{2}>\mathrm{F}_{2}>\mathrm{Cl}_{2}$
(b) $\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
(c) $\mathrm{I}_{2}>\mathrm{Br}_{2}>\mathrm{Cl}_{2}>\mathrm{F}_{2}$
(d) $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{F}_{2}>\mathrm{I}_{2}$

2018

Q. 887 Which of the following statements is not true for halogens ?
(a) All form monobasic oxyacids.
(b) All are oxidizing agents.
(c) All but fluorine show positive oxidation states.
(d) Chlorine has the highest electron-gain enthalpy:

2020

Q. 888 Statement I: Acid strength increases in the order given as $\mathrm{HF} \ll \mathrm{HCl} \ll \mathrm{HBr}$ <<HI.
Statement II: As the size of the elements F, Cl, Br, I increases down the group, the bond strength of $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI decreases and so the acid strength increases.
In the light of the above statements, choose the correct answer from the options given below.
(a) Statement I is incorrect but statement II is true.
(b) Both statement I and statement II are true
(c) Both statement I and statement II are false.
(d) Statement I is correct but statement II is false.

2021

Q. 889 In which one of the following arrangements the given sequence is not strictly according to the properties indicated against it ?
(a) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$
: Increasing Oxidizing power
(b) $\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$
:Increasing acidic strength
(c) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
:Increasing pk ${ }_{\text {a }}$ values
d) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
:Increasing acidic character

Chlorine

1999
Q. 890 Which of the following is used in the preparation of chlorine
(a) Both MnO_{2} and KMnO_{4}
(b) Only KMnO_{4}
(c) Only MnO_{2}
(d) Either MnO_{2} or KMnO_{4}

2012

Q. 891 When Cl_{2} gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
(a) zero to +1 and zero to -5
(b) zero to -1 ander to +5
(c) zero to -1 and zero to +3
(d) zero to +1 and zero to -3

2019

Q. 892 Match the following:
(A) Pure nitrogen
(i) Chlorine
(B) Haber process
(ii) Sulphuric acid
(C) Contact process
(iii) Ammonia
(D) Deacon's process
(iv) Sodium azide or Barium azide

Which of the following is the correct option ?

	(A)	(B)	(C)	(D)
(a)	(iv)	(iii)	(ii)	(i)
(b)	(i)	(ii)	(iii)	(iv)
(c)	(ii)	(iv)	(i)	(iii)
(d)	(iii)	(iv)	(ii)	(i)

Oxoacids of Halogens

2005
Q. 893 Which one of the following oxides is expected to exhibit paramagnetic behaviour ?
(a) CO_{2}
(b) SiO_{2}
(c) SO_{2}
(d) ClO_{2}

2010

Q. 894 The correct order of increasing bond angles in the following species is
(a) $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$
(b) $\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}$
(c) $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}$
(d) $\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}$

2015

Q. 895 Which of the statements given below is incorrect ?
(a) O_{3} molecule is bent.
(b) ONF is isoelectronic with $\mathrm{O}_{2} \mathrm{~N}^{-}$.
(c) OF_{2} is an oxide of fluorine
(d) $\mathrm{Cl}_{2} \mathrm{O}_{7}$ is an anhydride of perchloric acid.

2016

Q. 896 Among the following the correct order of acidity is
(a) $\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$
(b) $\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}<\mathrm{HClO}_{3}$
(c) $\mathrm{HClO}_{3}<\mathrm{HClO}_{4}<\mathrm{HClO}_{2}<\mathrm{HClO}$
(d) $\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}$

Interhalogen Compounds

2017
Q. 897 Match the interhalogen compounds of column-I with the geometry in column-II and assign the correct code.
Column I

Column II

(A) XX
(i) T-shape
(B) XX_{3}^{\prime}
(ii) Pentagonal bipyramidal
(C) XX_{5}^{\prime}
(iii) Linear
(D) XX_{7}^{\prime}
(iv) Square pyramidal
(v) Tetrahedral Code:

A B C D

(a)	(iii)	(i)	(iv)	(ii)
(b)	(v)	(iv)	(iii)	(ii)
(c)	(iv)	(iii)	(ii)	(i)
(d)	(iii)	(iv)	(i)	(ii)

Group-18 Elements

2000

Q. 898 Which compound has planar structure?
(a) XeF_{4}
(b) XeOF_{2}
(c) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(d) XeO_{4}
Q. 899 Identify the incorrect statement, regarding the molecule XeO_{4}.
(a) XeO_{4} molecule is square planar.
(b) There are four $p \pi-d \pi$ bonds.
(c) There are four $\mathrm{sp}^{3}-\mathrm{p}, \sigma$ bonds.
(d) XeO_{4} molecule is tetrahedral.

Q. 900 | Match the 2019 |
| :--- |
| Column-I with its structure in Column- II |
| and assign the correct code. |

Column-I					Column-II		
(A)	XeF_{4}	(i)	pyramidal				
(B)	XeF_{6}	(ii)	square planar				
(C)	XeOF_{4}	(iii)	distorted octahedral				
(D)	XeO_{3}	(iv)	square pyramidal				
(A)					(B)	(C)	(D)

(a)	(iii)	(iv)	(i)	(ii)
(b)	(i)	(ii)	(iii)	(iv)
(c)	(ii)	(iii)	(iv)	(i)
(d)	(ii)	(iii)	(i)	(iv)

(d)
(ii)
(iii)
(i) (iv)

2021
Q. 901 Noble gases are named because of their inertness towards reactivity. Identify an incorrect statement about them.
(a) Noble gases have large positive values
of electron gain enthalpy.
(b) Noble gases are sparingly soluble in water.
(c) Noble gases have very high melting and boiling points.
(d) Noble gases have weak dispersion forces.

