MP - PSC
 State Civil Services

Madhya Pradesh Public Service Commission

Volume - 11

Numerical Ability and Data
Interpretation

Numerical Ability and Data Interpretation

s.No.	Chapter Name	Page No.
1.	Percentage	1
2.	Profit \& Loss	12
3.	Partnership	19
4.	Average	24
5.	Number System	32
6.	Methods of Unit Measurement	43
7.	Simplification	46
8.	Surds \& Indices	57
9.	Order of Magnitude	67
10.	LCM \& HCF	69
11.	Time \& Work	75
12.	Speed, Time \& Distance	83
13.	Boat \& Stream	90
14.	Simple Interest	97
15.	Compound Interest	104
16.	Ratio \& Proportion	112
17.	Mixture \& Alligation	119
18.	Probability	125
19.	Measures of Central Tendency	
		46

20.	Mensuration	146
21.	Algebra (Equation \& Factors)	167
22.	Sets	181
23.	Sampling \& Variance	185
24.	Geometry	196
25.	Data Interpretation	228

Percentage

- Percentage means 'Per hundred'.
- The fraction whose denominator is 100 , is called percentage and the numerator of that fraction is called percentage rate.
- 5 out of $100=\frac{5}{100}=5 \%$
- 10 out of $100=\frac{10}{100}=10 \%$
- That is, when an amount is compared with 100, it is called percentage. The basis with which the comparison is made. In the fraction, the base will be called the denominator.

Conversion From Percentage to Fraction

$$
\begin{array}{lll}
100 \%=1 & 10 \%=\frac{1}{10} & 5 \frac{5}{19} \%=\frac{1}{19} \\
50 \%=\frac{1}{2} & 9 \frac{1}{11} \%=\frac{1}{11} & 5 \%=\frac{1}{20} \\
33 \frac{1}{3} \%=\frac{1}{3} & 8 \frac{1}{3} \%=\frac{1}{12} & 4 \frac{1}{6} \%=\frac{1}{24} \\
25 \%=\frac{1}{4} & 7 \frac{9}{13} \%=\frac{1}{13} & 4 \%=\frac{1}{25} \\
20 \%=\frac{1}{5} & 7 \frac{1}{7} \%=\frac{1}{14} & 2 \frac{1}{2} \%=\frac{1}{40} \\
16 \frac{2}{3} \%=\frac{1}{6} & 6 \frac{2}{3} \%=\frac{1}{15} & 37 \frac{1}{2} \%=\frac{3}{8} \\
14 \frac{2}{7} \%=\frac{1}{7} & 6 \frac{1}{4} \%=\frac{1}{16} & 62 \frac{1}{2} \%=\frac{5}{8} \\
12 \frac{1}{2} \%=\frac{1}{8} & 5 \frac{15}{17} \%=\frac{1}{17} & 57 \frac{1}{7} \%=\frac{4}{7} \\
11 \frac{1}{9} \%=\frac{1}{9} & 5 \frac{5}{9} \%=\frac{1}{18} & 66 \frac{2}{3} \%=\frac{2}{3} \\
80 \%=\frac{4}{5} & 75 \%=\frac{3}{4} &
\end{array}
$$

Note -

(i) To convert a fraction or a decimal fraction or an integer into a percentage, multiply it by 100.
(ii) To convert a percentage to a fraction, divide it by 100.

- One number is what percent of another number -
\% Quantity $=\frac{\text { Given number }}{\text { Basic }(\text { another number })} \times 100$

Ex. 1 What percent of 48 is 6 ?
Sol. Let $\mathrm{x} \%$ of $48=6$
Now, $48 \times \frac{x}{100}=6$
$\frac{12 x}{25}=6$
$x=\frac{6 \times 25}{12}=12 \frac{1}{2}$
The percent $12 \frac{1}{2} \%$ of 48 is 6 .

Ex. 2 Convert $\frac{9}{16}$ into percentage.
Sol. $\frac{9}{16}=\left(\frac{9}{16} \times 100\right) \%=\frac{225}{4} \%=56 \frac{1}{4} \%$
Ex. 3 When 60 is subtracted from 60% of a number, the result is 60 . The number is-
(a) 120
(b) 150
(c) 180
(d) 200

Sol. (b)
Let the number be x , then -
$x \times 60 \%-60=60$
$\Rightarrow 0.60 x-60=60$
$\Rightarrow 0.60 x=120$
$\Rightarrow x=\frac{120}{0.60}$
$X=200$
\therefore The number is 200 .

If there is a percentage change

Case I- If there is increase of $x_{1} \%$ \& $x_{2} \%$ then -
Percentage increase $=x_{1}+x_{2}+\frac{x_{1} \cdot x_{2}}{100}$
Case II - If there is decrease of $x_{1} \% \& x_{2} \%$ then -
Percent decrease $=x_{1}+x_{2}-\frac{x_{1} \cdot x_{2}}{100}$

Case III - If there is increase of $x_{1} \%$ and decrease of $x_{2} \%$ then -

$$
\text { Percentage change }=x_{1}-x_{2}-\frac{x_{1} \cdot x_{2}}{100}\left[\begin{array}{l}
x_{1}=\text { Always percentage increase } \\
x_{2}=\text { Always percentage decrease. }
\end{array}\right]
$$

Note- If you want to calculate the percentage change in expenses, sales income, revenue, area, etc., then the same rule will be used.

Ex. 1 Two successive price increases of 10% and 10\% of an article are equal to which one single price increase?
(a) 19%
(b) 20%
(c) 21%
(d) 22%

Sol. (c)
Let the initial price of any item $=100$
New price $=110 \%$ of 100 of 110%.
$\left(100 \times \frac{110}{100} \times \frac{110}{100}\right)=121=21 \%$
Hence, the single price increase is equal to 21 percent.

Ex. 2 The price of laptop is increased by 25%. Now by what percent is the price increased for the second time so that the total increase becomes 35% ?
(a) 7.5
(b) 9
(c) 8
(d) 10

Sol. (c)
Given that -
Price increased by $25 \%=x$
The overall increase was 35%.
Formula:
Total Increment $=x+y+x y / 100$
Calculation:
$\Rightarrow 35=25+y+(25 \times y / 100)$
$\Rightarrow 35=25+y+y / 4$
$\Rightarrow 140=100+4 y+y$
$\Rightarrow 140-100=5 y$
$\Rightarrow 40=5 y$
$\Rightarrow \mathrm{y}=8$
Hence, the second time increase is 8%.

$$
\begin{aligned}
& \text { Method II } \\
& \text { Let the price of laptop }=100 \\
& \text { Price } \\
& \text { Percent increase }=\frac{135-125}{125} \times 100 \\
& \qquad=\frac{10}{125} \times 100=8 \%
\end{aligned}
$$

Ex. 3 The value of a tool decreases by 20\% every year. What will be the cost of that tool after 3 years?
(a) 48.8%
(b) 51.2%
(c) 54%
(d) 60%

Sol. (a)

$20 \%=1 / 5$	
Initial	Final
5	4
5	4
5	4
125	64

Required Percentage $=\frac{61}{125} \times 100=48.8 \%$

Method II

Let the price of tool $=x$
According to question,
Price after 8 years $=x \times \frac{80}{100} \times \frac{80}{100} \times \frac{80}{100}$

$$
=\frac{64}{125} x
$$

Decrease in price $=\mathrm{x}-\frac{64}{125} \mathrm{x}=\frac{61}{125} \mathrm{x}$
Percentage decrease $=\frac{61}{\frac{125}{x}} \times \times 100=48.8 \%$

Formula Related to Population

- If the population of a city is P and it is increasing at the rate of $\mathrm{x} \%$ per annum, then the population after n years -
$=P\left(1+\frac{x}{100}\right)^{n}$
- If it is decreasing, then the population $=P\left(1-\frac{x}{100}\right)^{n}$

Ex. 1 If the population of a city is increasing at the rate of 4% per annum and the present number of people is 15625 , then what will be the population after 3 years?
Sol. Required Population $=15625\left(1+\frac{4}{100}\right)^{3}$

$$
=15625 \times \frac{26}{25} \times \frac{26}{25} \times \frac{26}{25}=17576
$$

Ex. 2 The population of a city is 8000. If the number of males increases at the rate of 6 percent and the rate of increase in the number of females is 10 percent, then the population will become 8600 . Find the number of females in the city.
Sol. Let the number of females $=x$
Then, 110% of $x+106 \%$ of $(8000+x)=8600$

$$
\begin{aligned}
& \frac{110 x}{100}+\frac{106(8000-x)}{100}=8600 \\
& x(110-106)=8600 \times 100-8000 \times 106 \\
& \therefore x=\frac{8600 \times 100-8000 \times 106}{110-106}=\frac{12000}{4}=3000
\end{aligned}
$$

Ex. 3 In 1988 the population of a city decreased by 12\%. In 1989 it increased by 15%. What was the overall impact on the city's population in the early 1990s?
Sol. \quad \% Impact $=\%$ Increase $-\%$ Decrease $-\frac{(\% \text { Increase)(\% Decrease) }}{100}$
$=15-12-\frac{15 \times 12}{100}=15-13.8=12$
\therefore The population increased by 1.2%.

- If x percent of any amount is taken by the first person, y percent of the balance is taken by the second person and after taking z percent of the remaining amount by the third person, if A is left, then the total amount initially -

$$
=\frac{A \times 100 \times 100 \times 100}{(100-x)(100-y)(100-z)}
$$

- An increase or decrease in the price of a commodity, a decrease or increase in it consumption -
(a) \% Increase in consumption $=\frac{100 \times \text { decrease }}{100-\text { decrease }}$
(b) \% Decrease in consumption $=\frac{100 \times \text { increase }}{100+\text { increase }}$

Ex. 1 If the price of sugar is increased by 40\%, by what percent should a family reduce it annual consumption of sugar so that the expenditure of the family does not increase?
(a) $24 \frac{4}{7} \%$
(b) $28 \frac{4}{7} \%$
(c) $29 \frac{4}{7} \%$
(d) $30 \frac{4}{7} \%$

Sol. (b)
Let , the consumption initially was $=100$ units and price per unit $=$ ₹100.
Initially total expenditure $=₹(100 \times 100)=₹ 10000$
New price $=140$ per units and let the new consumption $3 / 4(100-X)$ units.
Now, expenditure $=140 \times(100-x) \times(14000-140 x)$
$14000-140 x=10000$
$\Rightarrow 140 \mathrm{x}=4000$
$\Rightarrow \mathrm{x}=\frac{4000}{140}=\frac{200}{7} \%=28 \frac{4}{7} \%$
Decrease in consumption $=28 \frac{4}{7} \%$

Method II

Decrease in comsumption \%Decrease $=\frac{100 \times \text { Increase }}{100+\text { Increase }}$

$$
\begin{aligned}
\% \text { Decrease } & =\frac{100 \times 40}{100+40} \\
& =\frac{4000}{140}=\frac{200}{7} \\
& =28 \frac{4}{7} \%
\end{aligned}
$$

Ex. 2 A 10\% reduction in the price of sugar allows a housewife to buy 6.2 kg more sugar for ₹ 1116. What is the reduced price of sugar per kg?
(a) ₹ 12
(b) ₹ 14
(c) ₹ 16
(d) ₹ 18

Sol. (d)
Let the price initially $=\mathrm{X}$ per kg.

New price $=\frac{90 x}{100}$ Rs. $/ \mathrm{kg} .=\frac{9 x}{10}=$ Per kg.
$\frac{116}{(9 x / 10)}-\frac{1116}{x}=6.2$
$\Rightarrow \frac{1240}{x}-\frac{1116}{x}=6.2$
$6.2 x=(1240-1116)=124$
$\Rightarrow x=\frac{124}{6.2}=\frac{1240}{62}=20$
Reduced price $=\left(\frac{90}{100} \times 20\right)$ per kg. $=₹ 18$ per kg .

Method II

For the current price -
Rs. $\times \%$ change $=$ Weight (Less/More)
$1116 \times \frac{10}{100}=6.2$
$\Rightarrow \frac{1162}{62}=18 ₹ \Rightarrow$ Current price.

Ex. 3 If the price of petrol is reduced by 10%, by how much will a consumer have to increase the consumption of petrol so that his expenditure on petrol does not decrease?
(a) $11 \frac{1}{9} \%$
(b) $12 \frac{1}{3} \%$
(c) $10 \frac{1}{2} \%$
(d) 14%

Sol. (a)
Let the initial consumption of petrol $=100$ Units and it's price $=₹ 100$ per unit.
Total price = ₹ (100×100) =₹ 10000
New price = ₹90 per unit.
Let, new consumption $=(100+X)$ units.
Now, the total price $=(₹ 100+\mathrm{x}) \times 90]=₹(9000+90 \mathrm{x})$
$\therefore 9000+90 x=10000=90 x=1000$
$\Rightarrow x=\frac{1000}{90}=\frac{100}{9}=11 \frac{1}{9}$
Increase in consumption $=11 \frac{1}{9} \%$

Method II

Increase in consumption $=\frac{100 \times \text { Decrease }}{100-\text { Decrease }}$
$\%$ Increase $=\frac{100 \times 10}{100-10}$

$$
\begin{aligned}
& =\frac{1000}{90}=\frac{100}{9} \\
& =11 \frac{1}{9} \%
\end{aligned}
$$

- If each side or vertices of an equilateral triangle, each side or diagonal or perimeter of a square, the radius, diameter or circumference of a circle, each side of a cube or a cuboid, the radius or diameter of a sphere or a hemisphere, etc., increase or decrease by x percent then the percentage decrease or increase in it's area is -

$$
=2 x \pm \frac{x^{2}}{100} \quad\left[\begin{array}{c}
+ \text { Increase } \\
- \text { Decrease }
\end{array}\right]
$$

Ex. 1 When the radius is increased by 25%, then find the percentage increase in the area of the circle.
(a) 50%
(b) 56.25%
(c) 56%
(d) 56.15%

Sol. Gradual increase $=A+B+(A B / 100)$

$$
\begin{aligned}
& =25+25+(25 \times 25 / 100) \\
& =50+6.25=56.25 \%
\end{aligned}
$$

$\therefore \%$ increase in the area $=56.25 \%$

Ex. 2 By what percent will the surface area of a cube increase when each of it's time is doubled?
(a) 200%
(b) 300%
(c) 150%
(d) 50%

Sol. (b)
We know that -
Total surface area of the cube $=6 a^{2}$
If both the sides are multiplied, then -
Total surface area $\frac{\begin{array}{c}1 \rightarrow 2 \\ 1 \rightarrow 2\end{array}}{\frac{1}{3}} \quad 4 \leftarrow$ New surface area
\therefore The surface area of the cube will increase $=\left(\frac{3}{1} \times 100 \%\right)=300 \%$

Ex. 3 If the radius and height of the base of a right circular cylinder are increased by 20% each, then by how much will the volume of the cylinder increase?
(a) 40%
(b) 60%
(c) 72.80%
(d) 96%

Sol. (c)
Let the radius and height of the cylinder be r and h respectively.

It's volume, $v=\pi r^{2} h$
New radius $=r+\frac{20}{100} r=\frac{6}{5} r$
New height $=h+\frac{20}{100} h=\frac{6}{5} h$
So, new volume $V_{1}=\pi\left(\frac{6}{5} r\right)^{2} \times\left(\frac{6}{5} h\right)=\frac{216}{125} \pi r^{2} h$
Hence, increase in volume $=\frac{216}{125} \pi r^{2} h-\pi r^{2} h=\frac{91}{125} \pi r^{2} h$
Hence, $\%$ increase $=\frac{\frac{91}{125} \pi r^{2} h}{\pi r^{2} h} \times 100=\frac{91}{125} \times 100$

$$
=\frac{364}{5}=72.8
$$

Method II

Volume of cylinder $=\pi r^{2} h$

$$
=\pi . r . r h
$$

Here we will use permutation formula twice
First time $=20+20+\frac{20 \times 20}{100}$
= 44\%

Second time $=44+20+\frac{44 \times 20}{100}=64+8.8=72.8 \%$

Question Based On Sets

- $n(A \cup B)=A$ and B together or at least one.
- $n(A \cap B)=$ Includes both.
- $n(A \cup B)=n(A)+n(B)-n(A \cap B)$
- Only $A=n(A)-n(A \cap B)$
- Only $B=n(B)-n(A \cap B)$

$(A \cap B)$

Ex. 1 In a school there are 22 boys in cricket team, 25 in hockey team and 30 in football team. Now if 15 boys play hockey and cricket, 16 boys play hockey and football, 13 boys play football and cricket and 9 boys play hockey, football and cricket, then find the total number of boys who play?
Sol. Let C, H and F be the set of boys playing Cricket, Hockey and Football respectively. Given that $=n(C)=22, n(H)=25, n(F)=30, n(C \cap H \cap F)=9$
$n(C \cap H)=15, n(H \cap F)=16, n(C \cap F)=13$

Now, the number of players playing only C and $\mathrm{H}=\mathrm{n}(\mathrm{C} \cap \mathrm{H})-\mathrm{n}(\mathrm{C} \cap \mathrm{H} \cap \mathrm{F})$

$$
=15-9=6
$$

Number of players playing only H and $\mathrm{F}=\mathrm{n}(\mathrm{H} \cap \mathrm{F})-\mathrm{n}(\mathrm{C} \cap \mathrm{H} \cap \mathrm{F})$
Number of players playing only C and $F=n(C \cap F)-n(C \cap H \cap F)$

$$
=13-9=4
$$

Number of players playing only $\mathrm{C}=22-6-9-4=3$
Number of players playing only H=25-6-9-4=6
And, number of players playing only $\mathrm{F}=30-7-9-4=10$
Hence, the total number of players $=3+6+3+9+7+10+4=42$

Ex. 2 In an office 72\% of employees like to drink tea and 44\% like to drink coffee. If each employee must like one of the two and 40 like both, then what is the total number of employees in the office?
(a) 200
(b) 240
(c) 250
(d) 320

Sol. (c)
Let, the total number of employees $=\mathrm{x}$
Now, $n(A)=\left(\frac{72}{100} \times x\right)=\frac{18 x}{25}, n(B)=\left(\frac{44}{100} \times x\right)=\frac{11 x}{25}$
And, $n(A \cap B)=40$
$\therefore n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$x=\left(\frac{18 x}{25}+\frac{11 x}{25}-40\right) \Rightarrow\left(\frac{29 x}{25}-x\right)=40$
$4 \mathrm{x}=(40 \times 25) \Rightarrow \mathrm{x}=250$
Hence, the total number of employees in the office $=250$

Method II

Tea $=72 \%$
Coffee $=44 \%$

$$
\begin{aligned}
\text { Both }(\text { Tea }+ \text { Coffee }) & =72+44+100 \\
& =116-100 \\
& =16 \% \\
\text { Total employees } & =\frac{40}{16} \times 100 \\
& =250
\end{aligned}
$$

Tea Coffee

Ex. 3 In an examination 34\% of the students failed in Mathematics and 41\% failed in English. If 20% of the students failed in both the subjects, then what is the percentage of students passed in both the subjects?
(a) 44%
(b) 50%
(c) 54%
(d) 56%

Sol. (a)
Let $A=$ set of failed students of Mathematics and $B=$ set of failed students of English
Then, $n(A)=34, n(B)=42, n(A \cap B)=20$
$\therefore n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$=(34+42-20)=56$
Hence, the number of people who failed in one or both the subjects $=56$
Percentage of students who passed $=(100-56) \%=44 \%$

Profit and Loss

- \quad Cost Price - Purchase price of an item.
- \quad Selling Price - The item sold for the rupees.
- MRP - The MRP of an item is called the marked price or printed price or list price.
- Discount - Always given on the retail price of an item. The MRP of an item is always 100% in

The case of discount i.e., (SP = MRP)

- \quad There is profit if, S.P. > C. P.

Profit $=$ Selling Price - Cost Price $($ Profit $=S P-C P)$

- \quad There is loss if, S.P. < C.P.

Loss $=$ Cost Price - Selling Price (Loss $=\mathrm{CP}-\mathrm{SP}$)

$$
\text { Profit } \%=\frac{\text { Profit }}{\text { Cost Price }} \times 100
$$

- The profit and loss is always find out at the cost price.
Loss $\%=\frac{\text { Loss }}{\text { Cost Price }} \times 100$

Selling Price $=\frac{100-\text { Profit } \%}{100} \times$ Cost Price (CP)
Selling Price $=\frac{100-\text { Loss } \%}{100} \times$ Cost Price (CP)
Cost Price $=\frac{100}{100-\text { Profit } \%} \times$ Selling Price (SP)
Cost Price $=\frac{100}{100-\text { Loss } \%} \times$ Selling Price (SP)

- If the cost price or selling price is given as the number of items, then the cost price of x item is equal to the selling price of y item.
Selling price $=x$, Cost price $=y$
$\%$ profit or loss $=\frac{(x-y) \times 100}{y} \quad \begin{aligned} & +=\% \text { Profit } \\ & -=\% \text { Loss }\end{aligned}$
- If the rate of buying of the item is given, then the rate of selling is given If an article is purchased at the rate of a for rupees n, then the $C P=\frac{n}{a}$
$S P=\frac{n}{a}\left(\frac{100 \pm r}{100}\right) \quad \frac{\text { Numerator }- \text { Rupees }}{\text { Denominator }- \text { Articles }}$
- Finding Buyer Price if Seller Price is given.
$C P=\frac{n}{a} \times\left(\frac{100}{100 \pm r}\right)$
When profit and loss both are equal then the cost price -
Cost Price $(C P)=\frac{\text { Sum of the selling price }}{2}$
Ex. 1 By selling an article for Rs. 1040, the profit earned by a seller is as much as the loss when it is sold for Rs. 928, then what is the cost price of the article?
Sol: Cost price $=\frac{1040+928}{2} \Rightarrow \frac{1968}{2}=$ Rs. 984
If there is \% profit or loss is given on the selling price.
There is a profit of $x \%$ on the selling price.
Selling price $=100$, Profit $=x, C P=100-x$
Real \% profit $=\frac{x \times 100}{100-x}$
If there is a loss of $x \%$ on the selling price then the loss percentage $=\frac{x \times 100}{100+x}$

Ex. 2 A seller professes to sell two watches of the same price at 20\% profit but takes profit on the selling price of one. If the difference between the selling price of both the watches is Rs. 48 then what is the cost price of each watch?
Sol: \% profit of the first $=\frac{20 \times 100}{80}=25 \%$
According to question, $25 \%-20 \%=48 \Rightarrow 5 \%=48$
$100 \%=\frac{48}{5} \times 100=$ Rs. 960

- If two articles are sold at $\mathrm{x} \%$ profit and $\mathrm{x} \%$ loss and their selling price becomes same then there will always be a loss.
$\Rightarrow \%$ Loss $=\frac{x^{2}}{100}$
- When a dishonest shopkeeper uses false weights - If a dishonest shopkeeper sells his goods at cost price but uses lesser weight instead of correct weight, then his profit percentage.
$\%$ Profit $=\frac{\text { True weight }- \text { Less weight }}{\text { Less weight }} \times 100$
- A decrease in the quantity of a commodity increases with a fall in the price.

Present Price (Rs. \% change) = Less/More Commodity/Quantity.

Examples

Q. 1 Books are bought at prices between Rs. 150 to Rs. 300 and they are sold at prices between Rs. 250 and Rs. 350, then what will be the maximum profit on selling 15 books?
(a) Can't be determined.
(b) Rs. 750
(c) Rs. 4,250
(d) Rs. 3,000

Sol: (d)

The cost price of one book is in between 150 to 300 rupees.
The selling price of one book is in between 250 to 350 rupees.
For maximum profit the cost price should be minimum and selling price should be maximum.
Therefore, $\quad C P=150$

$$
S P=350
$$

Profit $=S P-C P$

$$
=350-150
$$

$$
=\text { Rs. 200/book }
$$

Total profit on 15 books $=200 \times 15=$ Rs. 3000
Q. 2 A person buys some articles at the rate of Rs. P per dozen and sells them at the rate of $(P / 8)$ per article, what is his profit percentage?
(a) 30%
(b) 40%
(c) 50%
(d) 60%

Sol: (c)
Cost price of a dozen articles $=\mathrm{P}$ rupees.
Selling price of a dozen articles $=\left(\frac{P}{8} \times 12\right)=\frac{3 P}{2}$ rupees
Profit $=\left(\frac{3 P}{2}-P\right)=\frac{P}{2}$ rupees
$\%$ Profit $=\left(\frac{P}{2} \times \frac{1}{P} \times 100\right) \%=50 \%$
Q. 3 If the selling price of an article is $1 \frac{1}{3}$ of the cost price, find the profit \%.
(a) 25%
(b) $33 \frac{1}{3} \%$
(c) 1.33%
(d) $66 \frac{2}{3} \%$

Sol: (b)

Cost price of the article $=x$ (say)
Selling price of the article $=\frac{4 x}{3}$
Profit $=\frac{4 x}{3}-x=\frac{4 x-3 x}{3}=\frac{x}{3}$
\% Profit $=\frac{\frac{x}{3}}{x} \times 100$
$=\frac{100}{3}=33 \frac{1}{3} \%$

Smart Approach
 Cost Price : Selling Price

 $1 \rightarrow$ Profit
 Profit $=\frac{1}{3} \times 100=33 \frac{1}{3} \%$

Q. 4 Oranges were bought at the rate of 7 oranges for Rs. 3, at what rate per hundred they have to be sold to earn 33% profit ?
(a) Rs. 56
(b) Rs. 60
(c) Rs. 58
(d) Rs. 57

Sol: (d)
According to question,
Price of 7 oranges $=$ Rs. 3
Price of 1 orange $=$ Rs. $\frac{3}{7}$
For 33\% gain
SP (Selling Price) $=\frac{3}{7} \times \frac{133}{100}$
for 100 Oranges
SP (Selling Price) $=\frac{3}{7} \times \frac{133}{100} \times 100$
SP (Selling Price) $=57$ rupees .
Q. 5 A man bought 20 dozen eggs for Rs. 720. If he wants to earn 20% profit then find the selling price per egg ?
(a) Rs. 3.25
(b) Rs. 3.30
(c) Rs. 3.50
(d) Rs. 3.60

Sol: (d)

According to the question -
The cost price of 20 dozens of eggs = Rs. 720
The cost price of a dozen egg = Rs. 36
Cost price of an egg = Rs. 3
The selling price of 1 egg to get $20 \%=C P+$ Profit $\% \times C P$
$=3+\frac{20}{100} \times 3$
$=3+0.6=$ Rs. 3.6

