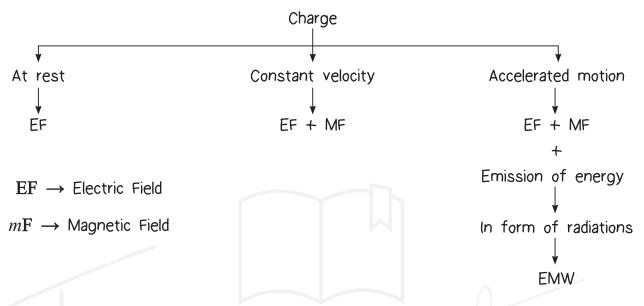


NEET - UG

NATIONAL TESTING AGENCY

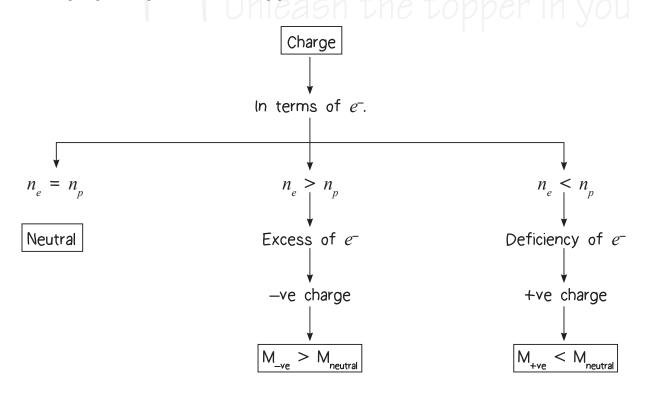
Physics

Volume - 4



Contents

7.	Electrostatics	7
2.	Electric Field	18
3.	Dipole	27
4.	Electric Flux	36
5.	Electric Potential	45
6.	Capacitance	62
7.	Current Electricity	101
8.	Magnetism	143
q.	Magnetism and Matter	175
10.	Electro Magnetic Induction	200
17.	Electromagnetic Waves	230
12.	Alternating Current	234


ELECTROSTATICS

* A branch of physics that studies electric charges at rest.

What is the charge?

- * Charge is the property of the body by which it can show its electrical & magnetic effect.
- * It is defined in terms of no. of electrons.

- Mass without charge can be possible for a body, but charge without mass is never possible.
- * Mass depends on the frame of reference according to the theory of relativity, but charge is independent of frame of reference. That's why charge is called invariant.

$$\mathbf{M} = \frac{\mathbf{M}_0}{\sqrt{1 - \frac{v^2}{v^2}}}$$

Charge does not follow this type of equation.

Electrostatic Force:

Coulomb's Law:

Two charges ' q_1 ' and ' q_2 ' kept at distance 'r' in a medium exert a force ' \mathbf{F} ' on each other and the magnitude of the force is given as:

$$\mathbf{F} = \frac{1}{4\pi\epsilon} \frac{q_1 q_2}{r^2}$$
 (In any medium)
$$\mathbf{\varepsilon} = \mathbf{\varepsilon}_0 \mathbf{\varepsilon}_r$$

$$\mathbf{\varepsilon} = \text{Absolute permittivity of medium}$$

$$\mathbf{\varepsilon}_0 = \text{Aermittivity of free space}$$

$$\varepsilon = \varepsilon_0 \varepsilon$$

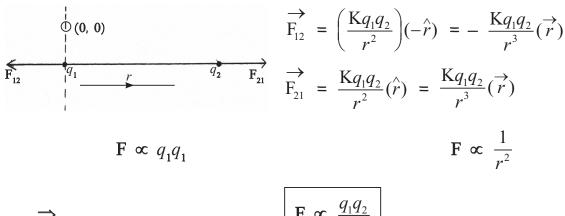
where

 ε_{r} = Relative permittivity

F in air or vacuum

$$F = \frac{1}{4\pi E_0} \frac{q_1 q_2}{r^2} = \frac{Kq_1 q_2}{r^2}$$

$$(K = \text{electrostatic constant} = 9 \times 10^9 \text{ N-m}^2/\text{C}^2)$$


Force (Vector) Direction Mag. Always along the line $\mathbf{F} = \frac{\mathbf{K}q_1q_2}{r^2}$ joining the 2 charges.

$$\overrightarrow{F} = \overrightarrow{F} \stackrel{\wedge}{F}$$

$$\downarrow$$
Unit vector \rightarrow direction

$$\Rightarrow \qquad \qquad \boxed{ \mathbf{F} \propto \frac{q_1 q_2}{r^2} }$$
 In CGS,
$$\boxed{ \mathbf{K} = 1 }$$
 In SI
$$\boxed{ \mathbf{K} = \frac{1}{4\pi\epsilon} }$$

- * According to Coulomb's law, force between 2 charges \boldsymbol{q}_1 and \boldsymbol{q}_2 kept at distance r is—
 - 1. ∞ to the product of the magnitude of the charges.
 - 2. Inversely ∞ to the square of the distance between them.
 - 3. For the direction, like charges repel & unlike charges attract.
 - 4. This force depends on the medium.
- * $q_1, q_2 \rightarrow \text{charge}$ Units \rightarrow SI \Rightarrow C (Coulomb) \rightarrow mc = 10^{-3} C \rightarrow $\mu c = 10^{-6}$ C \rightarrow nc = 10^{-9} C \rightarrow CGS \Rightarrow esu (Electrostatic unit)

 IC = 3×10^9 esu

*
$$r = \text{Distance between charges}$$

Unit $\rightarrow \text{SI-m}$, CGS-cm

1 m = 100 cm

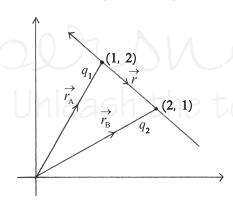
* Force

Unit
$$\rightarrow$$
 SI-N, CGS-dyne

 $1 \text{ N} = 10^5 \text{ dyne}$

*
$$K = \frac{Fr^2}{q_1q_2}$$
 $K = 9 \times 10^9 \frac{Nm^2}{c^2}$

Unit
$$ightarrow$$
 SI- $\frac{\mathrm{Nm}^2}{\mathrm{c}^2}$,


Dimensions-
$$\frac{[MLT^{-2}][L^2]}{[AT]^2} = [ML^3T^{-4}A^{-2}]$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{Nm}^2}$$

Unit
$$\rightarrow$$
 SI- $\frac{C^2}{Nm^2}$,

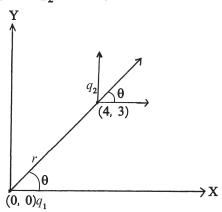
Dimensions- $[M^{-1}L^{-3}T^4A^2]$

Ques.:2 Charge particles located at the point (1, 2) & (2, 1). Find \overrightarrow{F}_{12} .

$$\vec{r}_{A} = \hat{i} + 2\hat{j}$$

$$\vec{r}_{\rm B} = 2\hat{i} + \hat{j}$$

$$\overrightarrow{r_{\rm A}}$$
 + \overrightarrow{r} = $\overrightarrow{r_{\rm B}}$


$$\Rightarrow \qquad \overrightarrow{r} = (\widehat{i} - \widehat{j}), \ \widehat{r} = \frac{\widehat{i} - \widehat{j}}{\sqrt{2}} = (\text{South east})$$

$$\Rightarrow \qquad \overrightarrow{F}_{12} = \left(\frac{kq_1q_2}{r^2}\right) \text{ (North west)} = -\left(\frac{kq_1q_2}{r^2}\right)\widehat{r}$$

$$|\overrightarrow{r}| = \sqrt{2}$$

Ques.:All distances in cm, q_1 = 2μ C, q_2 = 10 μ C. Find F on charge q_2 .

Solns.:

$$F = \frac{9 \times 10^9 \times 2 \times 10^{-6} \times 10 \times 10^{-6}}{(5 \times 10^{-2})^2}$$

$$= 9 \times 8 = 72 \text{ N}$$

$$\tan \theta = \frac{3}{4}$$

F = 72 N, 37° w.r.t. horizontal

$$F = 72 N$$

$$\overrightarrow{r} = 4\overrightarrow{i} + 3\overrightarrow{j}$$

_

$$1 \cdot \hat{r} = \frac{4\hat{i} + 3\hat{j}}{5} = topp$$

$$\overrightarrow{F} = 72 \left[\frac{4 i + 3 j}{5} \right] N$$

$$\overrightarrow{F}$$
 = 72 cos 37° \overrightarrow{i} + 72 sin 37° \overrightarrow{j}

$$\overrightarrow{F} = \frac{72}{5} \left[4 \overrightarrow{i} + 3 \overrightarrow{j} \right] N.$$

Superposition of Forces:

 \Rightarrow Resultant \rightarrow Vector sum.

 $\bigoplus_{i=1}^{n}$

Superposition of forces means the resultant force on a particle is the vector sum of all the forces acting on it.

Ques.: Net force on (i)A, (ii)B, (iii)C.

Solns.: I.

$$F_{AC} = \frac{k(2q)(3q)}{(2r)^2} ($$

$$\mathbf{F}_{\mathbf{A}\mathbf{B}} = \frac{k(2q)(q)}{r^2} \ (\boldsymbol{\longleftarrow})$$

$$\mathbf{F}_{\mathbf{AC}} = \frac{k(2q)(3q)}{(2r)^2} \ (\longleftarrow)$$

$$\mathbf{F}_{\text{net}} = \frac{2kq^2}{r^2} + \frac{\cancel{6} kq^2}{\cancel{4} r^2} ()$$

$$\mathbf{F}_{\text{net}}$$
 on point $\mathbf{A} = \frac{kq^2}{r^2} \left[2 + \frac{3}{2} \right] \frac{7}{2} \frac{kq^2}{r^2} ()$

ll.

$$(\longrightarrow)$$
 $\mathbf{F}_{AB} = \frac{2kq^2}{r^2}$, $\mathbf{F}_{BC} = \frac{k(q)(3q)}{r^2}$ (\longleftarrow)

$$\mathbf{F}_{\text{net}}$$
 on point $\mathbf{B} = \frac{-2kq^2}{r^2} + \frac{3kq^2}{r^2} = \frac{kq^2}{r^2}$ (-----)

III.

$$\mathbf{F}_{AC} = \frac{3kq^2}{2r^2} \; (\longrightarrow)$$

$$F_{BC} = \frac{3kq^2}{r^2} \left(\longrightarrow \right)$$

$$\mathbf{F}_{\text{net}}$$
 on point $\mathbf{C} = \frac{3kq^2}{r^2} \times \frac{3}{2} = \frac{9kq^2}{2r^2}$ (\longrightarrow)

Ques.: Find net force on -q(0, 0)?

Solns.:

$$(o, b)q$$

$$F_{BC}$$

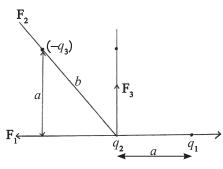
$$q(a, o)$$

$$q(a, o)$$

$$\overrightarrow{F}_{BA} = \frac{-kq^2}{q^2} \overrightarrow{i}$$

$$\overrightarrow{F}_{BC} = \frac{-kq^2}{b^2} \mathring{j}$$

$$\overrightarrow{F}_{\text{net}} = \frac{kq^2 \wedge}{a^2} \overrightarrow{i} + \frac{kq^2 \wedge}{b^2} \overrightarrow{j}$$

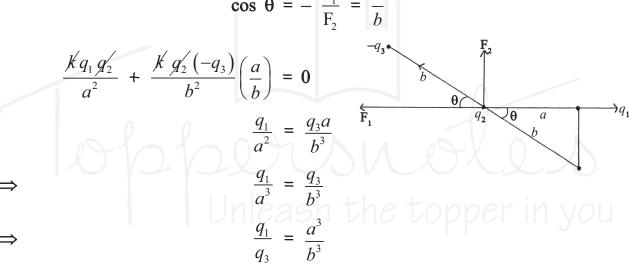

$$\Rightarrow_{\mathbf{A}}^{x} \left| \overrightarrow{\mathbf{F}}_{\text{net}} \right| = \sqrt{\mathbf{F}_{1}^{2} + \mathbf{F}_{2}^{2}} = \frac{kq^{2}}{ab} \sqrt{a^{2} + b^{2}}$$

Direction \rightarrow at an angle α to x-axis

$$\tan \alpha = \frac{F_2}{F_1} = \frac{a^2}{b^2}$$

Ques:If the force acting on q_2 is along y-direction find the ratio of the charges q_1 & q_3 ?

Solns.:


$$\overrightarrow{F}_3 = \frac{kq_2q_3}{b^2}$$

$$(\overrightarrow{F}_1 = \frac{kq_1q_2}{q^2}(-\overrightarrow{i}))$$

Along x-direction = $0 = F_1 + F_2 \cos \theta$

$$\cos \theta = -\frac{F_1}{F_2} = \frac{a}{b}$$

$$\frac{q_1}{q_2} = \frac{a^3}{h^3}$$

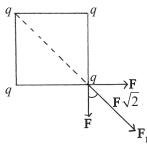
Ques.: Three charges of magnitude 5.0×10^{-7} C, -2.5×10^{-7} C and 1×10^{-7} C are fixed at the three corners A, B and C of an equilateral triangle of side 5 cm. Find the electric force on the charge at vertex C due to the rest two.

$$\begin{array}{c} C \\ 120^{\circ} \\ q_{3} = 1 \times 10^{-7} \text{ C} \\ \end{array}$$

$$\begin{array}{c} A \\ q_{1} = 5 \times 10^{-7} \text{ C} \\ \end{array}$$

$$\begin{array}{c} A \\ q_{2} = -2.5 \end{array}$$

$$F_{AC} = \frac{9 \times 10^9 \times 5 \times 10^{-7} \times 1 \times 10^{-7}}{(0.05)^2} = 0.18 \text{ N}$$

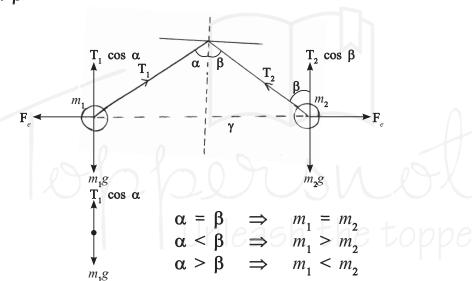

$$\mathbf{F_{BC}} = \frac{9 \times 10^9 \times (-2.5 \times 10^{-7}) \times 1 \times 10^{-7}}{(0.05)^2} = -0.09 \text{ N}$$

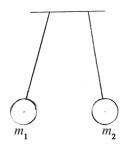
$$\rightarrow F_{\text{not}} = F_{AC} + F_{BC}$$

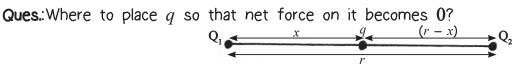
$$\begin{vmatrix} \rightarrow \\ F_{\text{net}} \end{vmatrix} = \sqrt{F_{\text{AC}}^2 + F_{\text{BC}}^2 + 2(F_{\text{AC}})(F_{\text{BC}}) \cdot \cos(120^\circ)}$$

= 0.156 N

Ques.:




Solns.:


$$\mathbf{F}_{\text{net}} = \mathbf{F}_{1} + \mathbf{F}\sqrt{2}$$

 \mathbf{Ques} 2 balls of masses m_1 and m_2 & charges q_1 & q_2 are suspended from same point by 2 different threads. Find the relation between α&β.

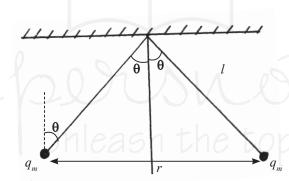
Solns.:

$$\frac{kqQ_1}{x^2} = \frac{kqQ_2}{(r-x)^2}$$

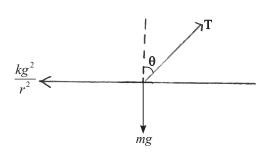
$$\frac{Q_1}{x^2} = \frac{Q_2}{(r-x)^2}$$

$$\left(\frac{r-x}{x}\right)^2 = \frac{Q_2}{Q_1}$$

$$x = \frac{r}{1 + \sqrt{\frac{Q_2}{Q_1}}} = \frac{r\sqrt{Q_1}}{\sqrt{Q_1} + \sqrt{Q_2}}$$


Ques.: Determine the location at which a small q charge is placed so that net force on it becomes equal to $\mathbf{0}$.

Solns.: ⇒

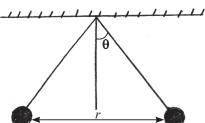

from 3e,
$$x = \frac{10 \text{ cm}}{1 + \sqrt{\frac{9e}{3e}}} = \frac{10}{\sqrt{3} + 1} \text{ cm}$$

from 9e,
$$y = \frac{10}{1 + \sqrt{\frac{3e}{9e}}} = \frac{10\sqrt{3}}{\sqrt{3} + 1}$$
 cm

Ques.:q = same, m = same, in equilibrium both the particles are at a distance 'r'. Find the \angle made by the string joined with one of the particle with the vertical?

 $T\cos\theta = mg$

$$T\sin \theta = \frac{kq^2}{r^2}$$


$$\tan \theta = \frac{kq^2}{r^2 mg}$$

$$\theta = \tan^{-1} \left(\frac{kq^2}{r^2 mg} \right)$$

$$T = \sqrt{(mg)^2 + \left(\frac{kg^2}{r^2}\right)^2}$$

Ques.: r' is eq^m distance between particles. If height of the string is halved, what will be new eq^m distance r_1 ?

Solns.:

$$\tan \theta = \frac{kq^2}{r^2 mg}$$

$$r = \sqrt{\frac{kq^2}{mg_s}}$$

$$\tan \theta = \frac{r/2}{h}$$

$$\frac{kq^2}{r^2mg} = \frac{r}{2h}$$

$$r^3 = \frac{2hkq^2}{mg}$$

...(1)

$$\int_{\tan \theta_{1}} \frac{kq^{2}}{r_{1}^{2}mg} = \int_{-\infty}^{\infty} \frac{kq^{2}}{r_{1}$$

$$\tan \theta_{1} = \frac{r_{1}/2}{h/2} = \frac{r_{1}}{h} = \frac{kq^{2}}{r_{1}^{2} \cdot mg}$$

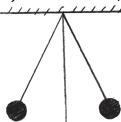
$$r_{1}^{3} = \frac{hkq^{2}}{mg} \qquad ...(2)$$

From eq n (1) & (2)

$$\Rightarrow$$

$$r^3 = 2r_1^3$$

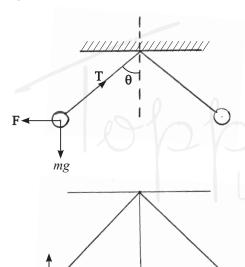
$$\Rightarrow$$


$$r_1^3 = \frac{r^3}{2}$$

$$\Rightarrow$$

$$r_1 = \frac{r}{2^{1/3}}$$

Ques.: If the system is taken into a gravity free satellite, then find the tension in the string:



Solns.: O Mq Mq Mq Mq

$$T = \frac{kq^2}{(2l)^2} = \frac{kq^2}{4l^2}$$

Ques.:2 identical charged spheres are suspended by 2 strings of equal length. Each string makes an angle θ with the vertical. When suspended in a liquid of density 0.8 g/cm^3 , the angle remains the same. What is the dielectric constant of the liquid, $d_s = 1.6 \text{ g/ce}$.

Solns.:

We know,

$$\tan \theta = \frac{F}{mg}$$

$$mg' = app.$$
 weight = $mg - B$

$$\mathbf{B} = \mathbf{V} \mathcal{J} g = \mathbf{V}_{\mathbf{S}} d_{\mathbf{L}} g$$

$$\tan \theta = \frac{F}{mg}$$

$$\frac{F}{mg} = \frac{F'}{mg'}$$

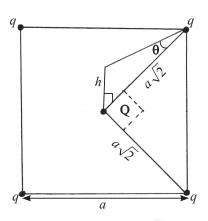
$$mg' = mg - B$$

$$mg' = V_s d_s g - V_s d_L g$$

$$= V_s (d_s - d_L) g$$

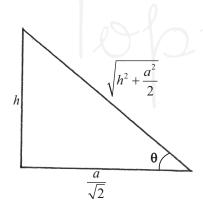
$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0\varepsilon_r} \frac{q_1 q_2}{r^2}$$

$$\mathbf{F'} = \frac{\mathbf{F}}{\varepsilon_r}$$


$$\Rightarrow$$

$$\frac{F}{V_s d_s g} = \frac{F}{\varepsilon_r (V_s) (d_s - d_L) g}$$

$$\varepsilon_r = \frac{d_s}{d_S - d_L} = 2$$



Ques.:4 identical particles are kept at the vertices of a square 5^{th} particle of charge Q is placed at a height 'h' from the centre of the square. Find the net force on it, if the side of the square is 'a'?

Solns.: ⇒

 \Rightarrow

$$r^{2} = \frac{a^{2}}{2} + h^{2}$$

$$r = \sqrt{\frac{a^{2}}{2} + h^{2}}$$

$$\tan \theta = \frac{h\sqrt{2}}{a} = \frac{\sqrt{2}h}{a} = \frac{h\sqrt{2}}{a}$$

$$F_{net} = 4 F \sin \theta$$

[Horizontal camponent cancel, vertical component add]

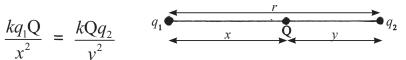
$$\mathbf{F}_{\text{net}} = \frac{4 \times kqQ}{\left(\frac{a^2}{2} + h^2\right)} \times \frac{h}{\left(\sqrt{\frac{a^2}{2} + h^2}\right)} = \frac{4h kqQ}{\left(\frac{a^2}{2} + h^2\right)^{3/2}}$$

$$\therefore \sin \theta = \frac{h}{\sqrt{\frac{a^2}{2} + h^2}}$$

For equilibrium,

$$4F \sin \theta = mg$$

$$m = \frac{4F\sin\theta}{g} = \frac{4kQqh}{\left(h^2 + \frac{a^2}{2}\right)^{3/2}g}$$


For the Equilibrium of System:

- 1. Position of charge.
- 2. Nature & magnitude of the charge.

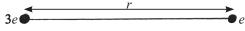
Position of Charge:

Ques.: Find the position of the charge Q for which, system will be equilibrium?

$$\frac{kq_1Q}{x^2} = \frac{kQq_2}{y^2}$$

Solns.:

 \Rightarrow


$$\frac{x}{y} = \sqrt{\frac{q_1}{q_2}}$$

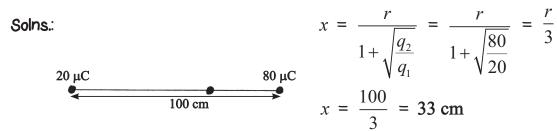
$$x + y = r$$

$$x = \frac{r}{1 + \sqrt{\frac{q_2}{q_1}}} = \frac{r\sqrt{q_1}}{\sqrt{q_1} + \sqrt{q_2}}$$
 (from q_1)

$$y = \frac{r}{1 + \sqrt{\frac{q_1}{q_2}}} = \frac{r\sqrt{q_2}}{\sqrt{q_1} + \sqrt{q_2}} \text{ (from } q_2\text{)}$$

Ques.: Find the position of the 3rd charge at which it will be in equilibrium.

Solns.: ⇒


$$x = \frac{r}{1 + \sqrt{3}}$$

$$y = \frac{r}{1 + \frac{1}{\sqrt{3}}}$$

$$= \frac{r\sqrt{3}}{\sqrt{3}+1}$$

Ques.: Find the distance from $20~\mu C$ so that net force on the particle kept at the point will be equal to 0.

2. Nature and Magnitude of Charge:

To calculate-Magnitude of the charge so that system will be in equilibrium. We must apply net force = 0, on any other charge in the system.

Ques.: 2 identical charges are kept at distance 'r'. Find the nature & magnitude of the 3rd charge placed at midpoint so that the system remains in equilibrium.

Solns.:
$$\frac{kqQ}{\left(r/2\right)^2} + \frac{kqq}{r^2} = 0$$

$$\Rightarrow \frac{kq}{r^2} \left[4Q + q\right] = 0$$

$$Q = \frac{-q}{4}$$

Ques.: Two charges q and 4q are kept at distance r. Find the nature and magnitude of the

Solns.:
$$\Rightarrow$$

$$x = \frac{r}{1+2} = \frac{r}{3}$$

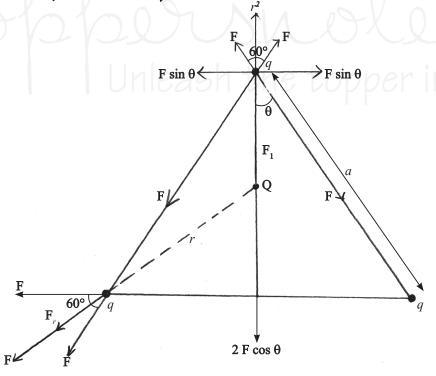
$$y = \frac{2r}{3}$$

$$\frac{kq(4q)}{r^2} + \frac{k(4q)(Q) \times 9}{(2r)^2} = 0$$

$$\frac{kq}{r^2} \left(4q + \frac{AQ \times 9}{A} \right) = 0$$

$$\Rightarrow \qquad 4q + 9Q = 0$$

$$Q = \frac{-4}{9}q$$


$$\frac{kqQ}{\left(\frac{r}{3}\right)^2} + \frac{kq(4q)}{r^2} = 0$$

$$\Rightarrow \qquad \frac{9kq(4q)}{r^2} + \frac{4kqq}{r^2} = 0$$

$$\Rightarrow \qquad \frac{kq}{r^2} \left[9Q + 4q \right] = 0$$

$$\Rightarrow \qquad Q = -\frac{-4q}{9}$$

Ques.: Magnitude, so that system is in equilibrium.

$$r = \frac{a}{\sqrt{3}}$$

$$\mathbf{F_R} = \sqrt{\mathbf{F}^2 + \mathbf{F}^2 + 2\mathbf{F}^2 \cos 60^\circ}$$

$$= \sqrt{3\mathbf{F}^2} = \mathbf{F}\sqrt{3}$$