

NATIONAL TESTING AGENCY

Physics

Volume - 2

<u>Contents</u>

٦.	Gravitation	٦
2.	Mechanical Properties of Solids	20
З.	Mechanical Properties of Fluids	40
4.	Wave Motion	78
5.	Sound Wave	117
6.	Thermal Expansion	150
7.	Thermodynamics	PPF

GRAVITATION

Newton's Law of Gravitation:

* It states that every particle in the universe attracts all other particles with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them.

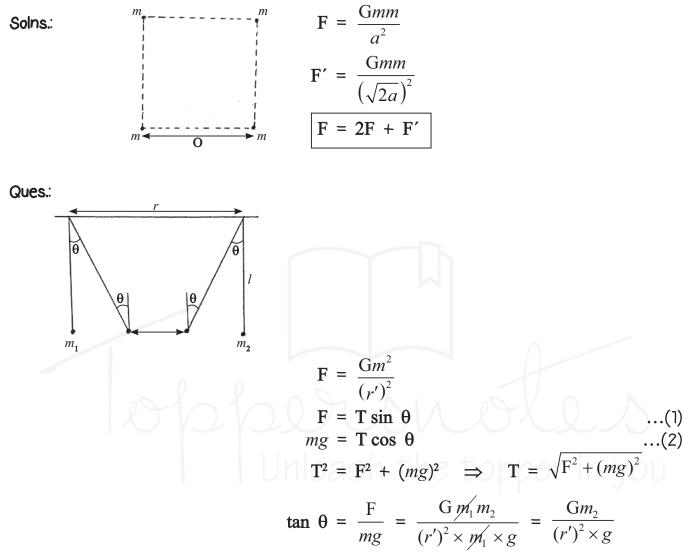
$$F \propto m_1 m_2$$

$$F \propto m_1 m_2$$

$$F \propto \frac{m_1 m_2}{r^2}$$

$$F \approx \frac{Gm_1 m_2}{r^2}$$

Ques.: Three masses, each equal to m are placed at three corners of a square of side a. Calculate the force of attraction on the mass placed at fourth corner.

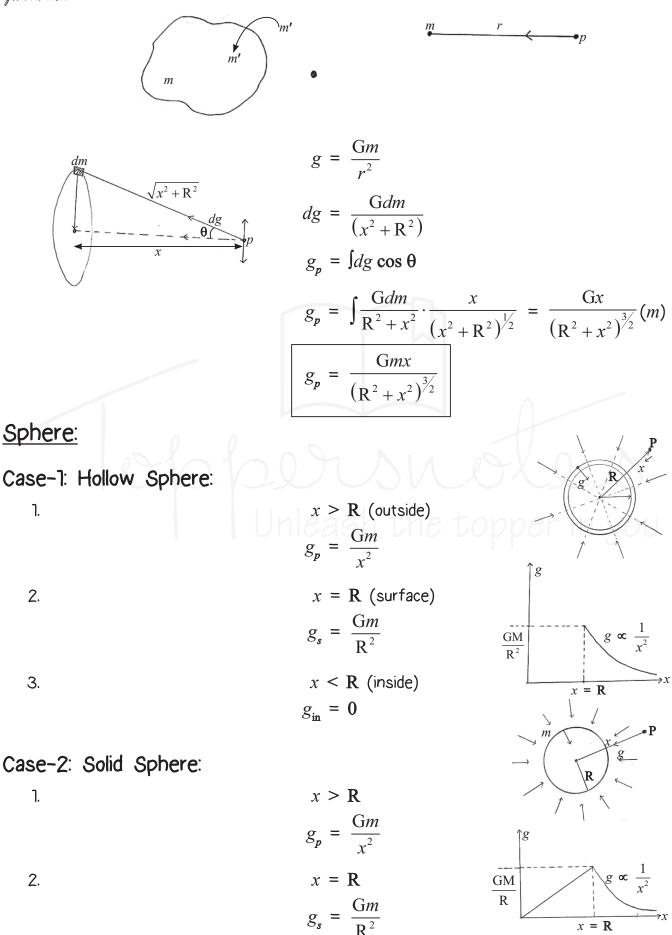


Ques.:2 particles, each of mass *m* goes around in a circular motion their mutual gravitational attraction. Find the value of speed with which particle is doing circular motion.

Solns.: $\mathbf{F} = \frac{Gm^2}{r^2}$ $\frac{M \times v^2}{r} = \frac{Gm^2}{(2r)^2}$ $v^2 = \frac{Gm}{4r} \implies \frac{1}{2}\sqrt{\frac{Gm}{r}} = v$

Gravitational Field:

* It is region in surrounding of mass where if any other mass comes, it experiences gravitational force.



З.

$$x < \mathbf{R}$$
$$g_{in} = \frac{Gmx}{\mathbf{R}^3} \implies gm \propto x$$

Earth:

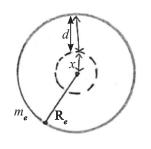
 $g_{s} = \frac{GMe}{R_{e}^{2}}$ $g_{s} \text{ (according to gravity)} = 9.8 \text{ m/s}^{2}$ $g_{s} \text{ (according to gravity)} = 9.8 \text{ m/s}^{2}$ $g_{p} = \frac{GM_{e}}{(R_{e} + h)^{2}}$ $g_{p} = \frac{GM_{e}}{R_{e}^{2} \left(1 + \frac{h}{R_{e}}\right)^{2}}$ $g_{p} = \frac{g_{s}}{\left(1 + \frac{h}{R_{e}}\right)^{2}}$ $(1 + x)^{n} = 1 + nx \text{ if } h \ll R_{e}$ $g_{p} = g_{s} \left(1 + \frac{h}{R_{e}}\right)^{2}$

$$\frac{h}{R_e} <<< 1$$
$$g_p = g_s \left(1 - \frac{2h}{R}\right)$$

III.

•••

 \Rightarrow

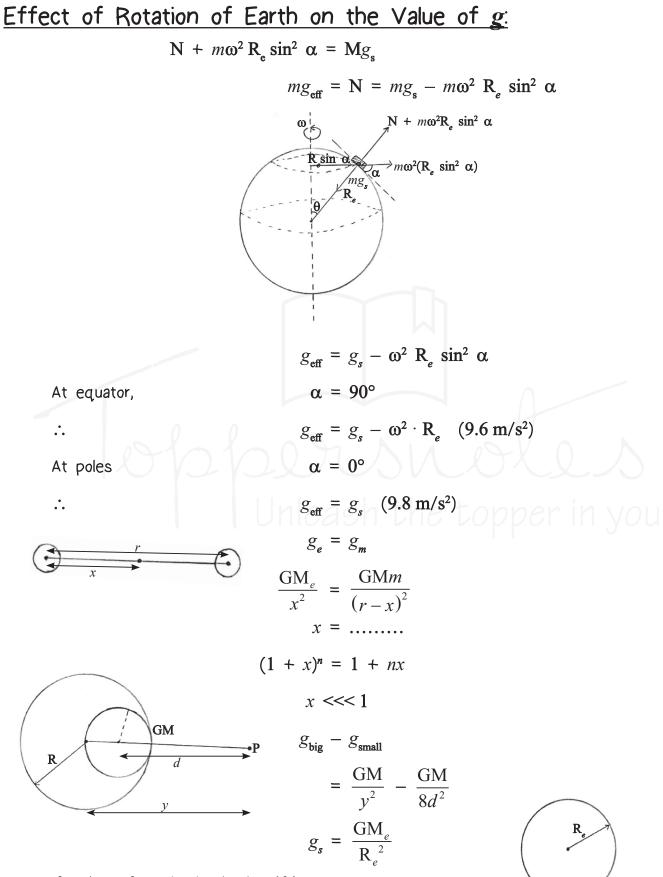


$$g_{in} = \frac{G \cdot M_e \cdot x}{R_e^3}$$

$$\boxed{x = R_e - d}$$

$$g_{in} = \frac{GM_e(R_e - d)}{R_e^2 \cdot (R_e)} = g_s \left(1 - \frac{d}{R_e}\right)$$

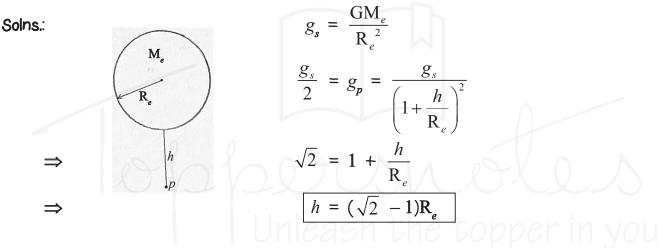
$$\boxed{g_{in} = g_s \left(1 - \frac{d}{R_e}\right)}$$



If radius of earth shrinks by 1% mass remains same.

$$g' = \frac{GM_e}{(0.99R_e)^2} = \frac{GM_e}{R_e^2(0.99^2)}$$
$$g' = \frac{g_s}{(1-0.01)^2} = g_s(1-0.01)^{-2}$$
$$g' = g_s(1+0.02) = g_s(1.02)$$
$$g' = g_s\left(\frac{102}{100}\right)$$

Ques.: At what height above the earth's surface value of gravitational force will be half of its value at the surface of the earth?



Ques.:With what angular velocity earth will rotate so that app. value of g at its equator becomes 0?

Solns.:

$$g_{\text{eff}} = g_s \text{ (at surface)}$$

$$g_{\text{eff}} = g_s - \omega^2 R_e \sin^2 \alpha$$

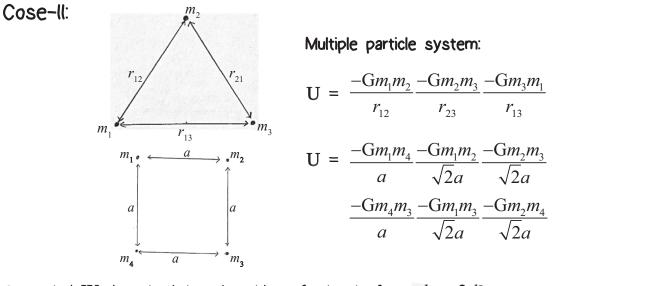
$$1 (:: \text{ at equator } \alpha = 90^\circ)$$

$$g_s - \omega^2 R_e = 0$$

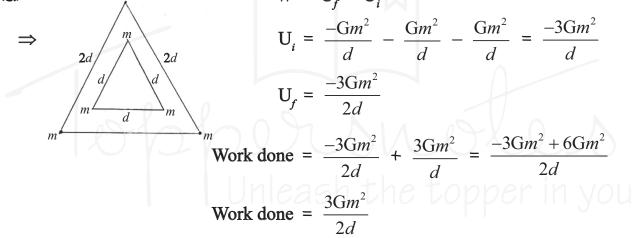
$$\omega = \sqrt{\frac{g}{R_e}}$$

- \Rightarrow
- # Gravitational Potential Energy or Gravitational Interaction Energy:
 - * Defined as the amount of work required to bring the particle from infinity to desired.

Case-I:
$$U = \frac{-Gm_1m_2}{r}$$
 m_1 m_2



Ques.:Find W done in \uparrow sing the sides of triangle form d to 2d?Solns.: m_{\land} $W = U_f - U_i$



Ques.:Find the velocity of $m_1 \& m_2$ when the separation between them becomes d.

Toppersnotes Unleash the topper in you

Gravitation

$$\Rightarrow \qquad v_{1} = \frac{m_{1}m_{2}}{m_{1}}$$

$$\frac{1}{2}m_{1}\left(\frac{m_{2}^{2}v_{2}^{2}}{m_{1}^{2}}\right) + \frac{1}{2}m_{2}v_{2}^{2} - \frac{Gm_{1}m_{2}}{d} = 0$$

$$\frac{1}{2}\frac{m_{2}v_{2}^{2}}{m_{1}} + \frac{1}{2}v_{2}^{2} = \frac{Gm_{1}}{d}$$

$$\Rightarrow \qquad v_{2}^{2} = \frac{2Gm_{1}}{d\left(\frac{m_{2}+m_{1}}{m_{1}}\right)}$$

$$v_{2} = \sqrt{\frac{2Gm_{1}^{2}}{d(m_{2}+m_{1})}} = m_{1}\sqrt{\frac{2G}{d(m_{2}+m_{1})}}$$

$$v_{1} = m_{2}\sqrt{\frac{2G}{d(m_{2}+m_{1})}}$$

$$0 = \frac{1}{2}m_{1}v_{1}^{2} - \frac{Gm_{1}m_{2}}{d}$$

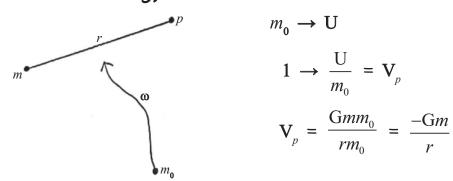
$$\Rightarrow \qquad \frac{1}{2}v_{1}^{2} = \frac{Gm_{2}}{d}$$

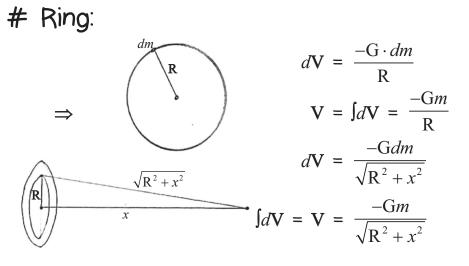
$$v_{1} = \sqrt{\frac{2Gm_{2}}{d}}$$

Gravitational Potential:

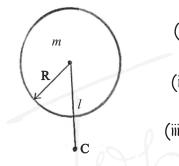
* W done in bringing a unit mass from ∞ to the given location.

Interactional Energy of Unit Mass:



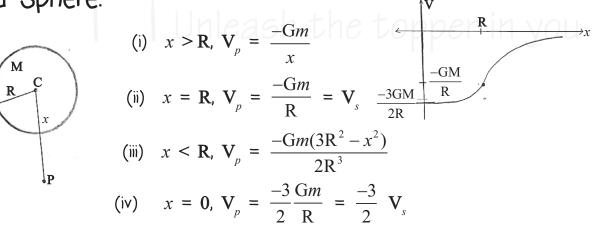


Hollow Sphere:



(i)
$$x > \mathbf{R}, \mathbf{V}_p = \frac{-\mathbf{G}m}{x}$$
 (ii) $x = \mathbf{R}, \mathbf{V}_p = \frac{-\mathbf{G}m}{\mathbf{R}}$ (iii) $x = \mathbf{R}, \mathbf{V}_p = \frac{-\mathbf{G}m}{\mathbf{R}}$ (iii) $x = \mathbf{R}, \mathbf{V}_p = \frac{-\mathbf{G}m}{\mathbf{R}}$

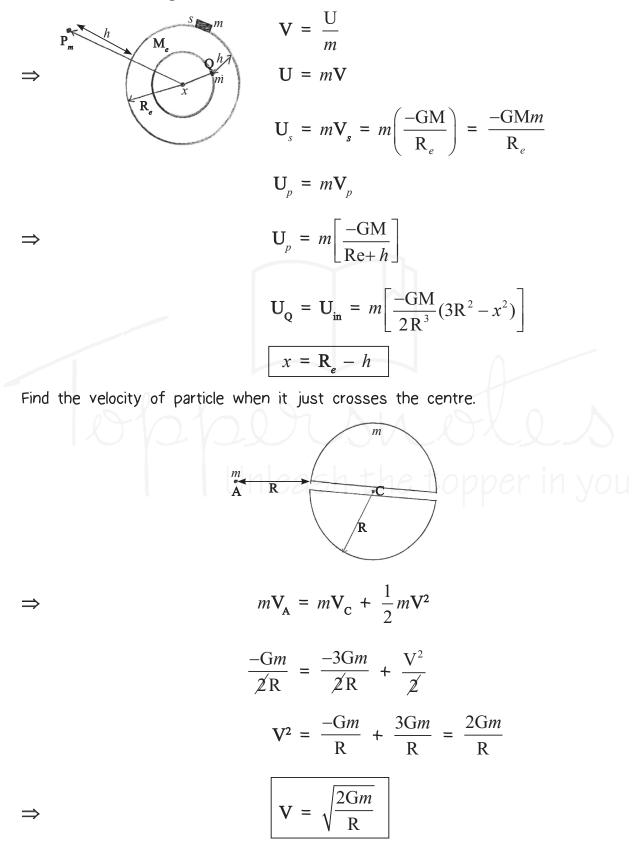
Solid Sphere:



Golden Key Point:

$$\overset{m_1}{\longrightarrow} \overset{m_2}{\longrightarrow} \overset{m_3}{\longrightarrow} \qquad \qquad \mathbf{V} = \frac{\mathbf{U}}{m} \\ \Rightarrow \qquad \qquad \mathbf{U} = m\mathbf{V} \\ \mathbf{U}_p = m_2 \mathbf{V}_p \\ \mathbf{U}_p = m_2 \left[\frac{-\mathbf{G}m_1}{r} \frac{-\mathbf{G}m_3}{r} \right]$$

Potential Energy of a Body in Earth's Gravitational Field:



Q↑h

Gravitation

Ques.:Find out the work done in shifting from P to Q? Solns.:

$$W = U_{f} - \frac{-GMm}{R+2h}, U_{i} = \frac{-GMm}{R+h}$$

$$W = U_{f} - U_{i}$$

$$W = \frac{-GMm}{R+2h} + \frac{GMm}{R+h}$$

$$W = GMm \left(\frac{-\frac{R'-h+R'+2h}{(R+2h)(R+h)}}\right)$$

$$= \frac{GMmh}{(R^{2}+3Rh+2h^{2})}$$

Ques.: If a particle is projected from the surface of earth with velocity V_0 , find the maximum height to which the particle will rise?

Solns .:

$$\Rightarrow V_{r_{\bullet}} = 0 \qquad \frac{1}{2} m V_0^2 \frac{-GM m}{R} = \frac{-GM m}{R+h}$$
$$\frac{1}{2} V_0^2 = GM \left(\frac{-R + R + h}{R^2 + Rh}\right) = \frac{GMh}{(R^2 + Rh)}$$
$$\Rightarrow V_0 = \sqrt{\frac{2GMh}{R^2 + Rh}}$$

Ques.: From the centre of ring, a point mass is projected such that it will escape to infinity. Find out that velocity?

Solns.:

 \Rightarrow

Ρ

Ć

$$\varepsilon_{1} = \mathbf{K} + \mathbf{P}$$

$$= \frac{1}{2}m\mathbf{V}^{2} + m(\mathbf{V}_{i}) = \mathbf{0}$$

$$= \frac{1}{2}m\mathbf{V}^{2} + m\left(\frac{-\mathbf{G}m}{\mathbf{R}}\right) = \mathbf{0}$$

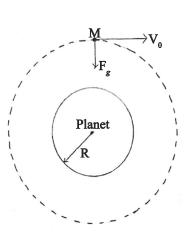
$$\mathbf{V} = \sqrt{\frac{\mathbf{G}m}{\mathbf{R}}}$$

Satellite:

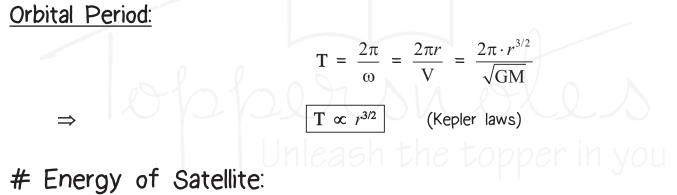
 \Rightarrow

Gravitation

$r \rightarrow \text{ orbital radius}$ $\mathbf{V} \rightarrow \text{ orbital speed}$ $\mathbf{F}_g = \frac{m \mathbf{V}_0^2}{r}$ $\frac{\mathrm{GM}m}{r^2} = \frac{-m \mathbf{V}_0^2}{r}$ $\mathbf{V}_0 = \sqrt{\frac{\mathrm{GM}}{r}}$



Note: It is independent of the mass of the satellite.



KE of satellite;

$$\mathbf{K} = \frac{1}{2}m\mathbf{V}_{0}^{2} = \frac{1}{2}\frac{m\mathbf{G}\mathbf{M}}{r}$$
$$\mathbf{K} = \frac{\mathbf{G}\mathbf{M}m}{2r}$$
$$\mathbf{PE \text{ of sat.}} = \mathbf{P} = \frac{-\mathbf{G}\mathbf{M}m}{r}$$
$$\mathbf{Total energy} = \mathbf{E}_{\mathrm{T}} = \frac{-\mathbf{G}\mathbf{M}m}{2r}$$
$$|\mathbf{E}_{\mathrm{T}}| = |\mathbf{K}\mathbf{E}| = \frac{1}{2}|\mathbf{PE}|$$

Ques.: A satellite is revolving around earth in orbital radius in $4R_{e}$. Find its orbital speed & time period?

Solns:

$$V_{0} = \sqrt{\frac{GM}{r}} = \sqrt{\frac{gr^{2}}{4Re}}$$

$$= \sqrt{\frac{gR_{e} \times R_{e}}{4R_{e}}} = \sqrt{\frac{gR_{e}}{4}}$$

$$V_{0} = \frac{1}{2}\sqrt{GR_{e}}$$
Time period:
$$\frac{2\pi(4 \times R_{e})^{3/2}}{\sqrt{gR_{e}^{2}}} = \frac{2\pi(4R_{e})^{3/2}}{\sqrt{gR_{e}^{2}}}$$

$$= 16\pi\sqrt{\frac{R_{e}}{g}}$$

Ques.: Two satellites A & B of same mass are orbiting around earth at altitudes R & 3R. Calculate the ratio of KE of A & B?

Solns.:
$$\Rightarrow$$

$$KE_{A} = \frac{GMm}{R + Re},$$

$$KE_{B} = \frac{GMm}{3R + Re}$$

$$\frac{KE_{A}}{KE_{B}} = \frac{3R + Re}{R + Re} = \frac{4R}{2R} = \frac{2}{1}$$

$$\Rightarrow \qquad 2:1$$

Ques.: A satellite of mass 2×10^3 kg is to be shifted from an orbit of radius 2Re to 3Re. Find out the minimum energy required to shift?

 $Solns. \Rightarrow$

$$E = \frac{-GMm}{2 \times 2R_e} + \frac{GMm}{6R_e}$$
$$= + GMm \left[\frac{-3+2}{12R_e}\right]$$
$$E = \frac{-GMm}{12R_e}$$

= 0

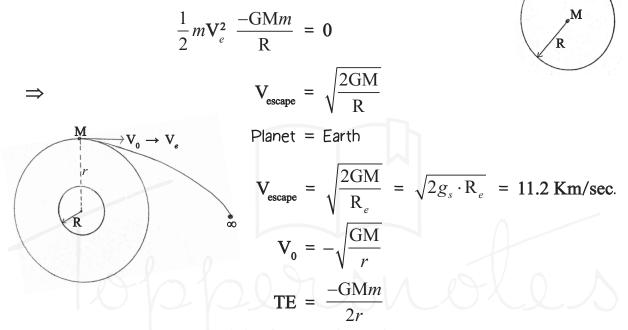
Μ

Bounded Motion and Escape Velocity:

Total energy of mass 'm' at the surface = K + Pŧ

$$\mathbf{E}_{\mathrm{T}} = \frac{1}{2}m\mathbf{V}^2 - \frac{\mathrm{GM}m}{\mathrm{R}} < \mathbf{0}$$

If somehow we implant KE such that its total energy = 0



If some how speed of satellite is increased from $V_{_0} \rightarrow V_{_{escape}}$

r

$$\frac{1}{2}mV_e^2 - \frac{GMm}{r} = 0$$
$$V_{es} = \sqrt{\frac{2GM}{r}}$$
$$V_{es} = \sqrt{2V_0}$$

Increase in speed of satellite = ΔV

$$= \sqrt{2} V_{0} - V_{0} = V_{0}(\sqrt{2} - 1)$$
$$= V_{0} \times 0.414$$
$$\Delta V = 41.4 \% V_{0}$$

If orbital velocity of a satellite is increased by 41.4%, then it escapes from the gravitational field of earth.

Ques.: An artificial satellite is moving around earth in a circular orbit such that its speed is equal to half of the escape velocity from the earth. Find the height of the satellite.

Solns.:⇒

 \Rightarrow

$$V_{0} = \frac{1}{2} V_{escape}$$

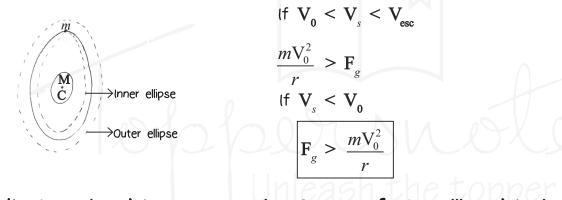
$$\sqrt{\frac{GM}{R+h}} = \frac{1}{2} \sqrt{\frac{GM}{R}}$$

$$\frac{GM}{R+h} = \frac{1}{4/2} \left(\frac{2 GM}{R}\right)$$

$$2R = R + h$$

$$R = h$$

Motion of Satellite in an Elliptical Path:



Angular Momentum in Case of Satellite Motion:

The only force acting is gravitational force.

