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Statistics and Econometrics 

Introductory Probability and the Central Limit Theorem 
Basics of Probability  
Consider an experiment with a variable outcome. Further, assume you know all possible out comes 
of the experiment. The set of all possible outcomes of the experiment is called the sample space 
and is denoted by S. A collection of outcomes within this sample space is called an event and is 
denoted by E. We can think of an event as a subset of the set of all the possible outcomes.  
 
Often, we are interested in the interaction between the events of a sample space. One such 
interaction is the union of events, denoted by the union operator ∪. The union of a set of events 
will occur if any of the events in the union occur. Thus, the union of the events A,B and C, i.e. A ∪ B 
∪ C, will occur if either event A, B or C occur. Another interaction is the intersection of events, 
denoted by the intersection operator ∩. The intersection of a set of events will occur if all of the 
events in the intersection occur. Thus, the intersection of the events A,B, and C, i.e. A∩B ∩C, will 
occur if the events A, B and C all occur.  
 
Knowing these operations, we can define some interactions between events.  
Definition 1 (Mutually Exclusive). Two sets A and B are called mutually exclusive if their inter section 
is empty:  

 
Definition 2 (Independent). An event E is said to be independent of an event F if  

 
Next, the three axioms of probability begin to relate set theory to probabilistic measurements. I use 
P(E) to represent the probability of some event E and P(S) to represent the probability of the entire 
sample space. 
 

Axioms of Probability 
1. 0 ≤ P(E) ≤ 1  
2. P(S) = 1  
3. For any sequence of mutually exclusive events E1, E2, . . . :  

 
These definitions and axioms explain the underpinnings of basic probabilistic calculations. With 
these basics we can advance to more intricate probabilistic questions.  
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Random Variables  
We are often interested in considering multiple outcomes of an experiment. For instance, we might 
be interested in the number of odd results from rolling three dice. In this example, we would be 
interested in multiple outcomes: the probability of the first die being odd, the probability of the 
second die being odd and the probability of the third die being odd. To work with multiple 
outcomes, we create a random variable.  
 
Definition 3 (Random Variable). A random variable is a function X that assigns a rule of corre 
spondence for every point ξ in the sample space S (called the domain) a unique real value X(ξ).  
 
The rule of correspondence is given either by a probability mass function or the probability density 
function, depending on the type of random variable considered.  
 
Definition 4 (Probability Mass Function). For a random variable that can take on at most a countable 
number of possible values, a probability mass function p(a) is defined by  

𝑝(𝑎)  =  𝑃(𝑋 =  𝑎). 
Definition 5 (Probability Density Function). For a random variable X that is continuously defined, a 
probability density function f(x) is defined such that for a subset B ∈ R Z  

 
We might also be interested in the probability that the random variable is less than some value. For 
such cases we define the distribution function.  
 
Definition 6 (Distribution Function). For a random variable X, the distribution function F is defined 
by  

𝐹(𝑥)  =  𝑃(𝑋 ≤  𝑥). 
For continuous random variables, the above equation can be represented as  

 
where f(t) is a probability density function.  
 
Hence, we can see that the derivative of the distribution function yields the probability density 
function.  
 
In the following example, I will illustrate the application of the random variable in the case 
mentioned in the beginning of this section.  
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Example 1.  
We let X denote the number of odd dice that turn up odd. Thus, X is a random variable that takes 
on one of the values 0,12,3 with the following probabilities:  

 
Thus, we can see that X is a discrete function, i.e. a random variable.  
 
Certain probability distributions interest us more than others because of their qualities. The normal 
random variable has such a distribution. This distribution’s peculiar qualities will make it the subject 
of the Central Limit theorem.  
 
Definition 7 (Normal Random Variable). X is a normal random variable with parameters µ and σ2if 
the density of X is given by  

 
Whenever µ = 0 and σ2 = 1 we get a simplified equation:  

 
We can see that f(x) is indeed a distribution function since integrating it from −∞ to ∞ gives 1 and 
hence the sample space has probability 1, as required by the second axiom of probability. Having 
defined the random variable, we are now interested in its properties. We can discribe the whole 
distribution of probabilities through two qualities of a random variable: its average value and 
spread. These terms are called expected value and variance, respectively.  
 
Definition 8 (Expected Value or Mean). If X is a discrete random variable having the probability mass 
function p(x), the expected value, denoted by E[X], is defined as  

 
If X is a continuous random variable having the probability density function f(x), the expected value 
is defined as  

 
Definition 9 (Variance). If X is a random variable with mean µ ,where µ = E[X], then the variance of 
X, denoted by Var(X), is defined as  

 
Now I will introduce a few properties of the expected value and mean that will appear later in the 
paper. First I will show that expected value is linear and apply this result to transformations of 
variance.  
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Lemma 2.1 (Transformations of Mean and Variance). If a and b are constants, then  

 
and  

 
 

Proof.  

1.  
and when µ = E[X],  

 
In the above proof, Step 4 simply applies the equality from Step 3. All other steps are easy algebraic 
manipulations. Next, I prove a lemma concerning transformations of the original random variable.  
Lemma 2.2. If X is a discrete random variable that takes on one of the values xi, i ≥ 1, with respective 
probabilities p(xi), then for any real-valued function g  

 
Proof. We start by grouping together all the terms having the same value of g(xi). Thus, let yj , j ≥ 1 
represent the different values of g(xi), i ≥ 1. Then:  
 

 
Next, I will demonstrate relevant properties of expected value and variance for joint random 
variables.  
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Lemma 2.3. If X and Y are random variables with finite expected value, then E[X + Y] = E[X] + E[Y]  
Proof. Let the sample space of X = x1, x2, ... and the sample space of Y = y1, y2, .... Then, we can 
write the random variable X+Y as a result of applying a function g(x,y) = x + y to the joint random 
variable (X,Y). 
 

 
 

Here, step 1 follows by Lemma 2.2. Step 3 follows since Pk P(X = xj , Y = yk) = P(X = xj ). Next, I show 
a property of mean and variance when considering independent random variables.  
 
Lemma 2.4. If X and Y are independent random variables, then  
 

 
and  

 
 

Proof. Let the sample space of X = x1, x2, ... and the sample space of Y = y1, y2, ....  

 
 
Next, let E[X] = a and E[Y] = b.  

 
Here, step 1 follows from the definition of independence, P(X = xj , Y = yk) = P(X = xj )P(Y = yk). Step 
6 follows from the definition of independence, E[XY ] = E[X]E[Y ] = ab. We can extend the concept 
of the mean to the situation where we are dealing with multiple random variables. In this case, we 
calculate the sample mean.  
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Definition 10 (Sample Mean). Let X1, ..., Xn be independent and identically distributed random 
variables having distribution function F and expected value µ. Such a sequence constitutes a sample 
from the distribution F. Given a sample, we define the sample mean, Xb, as:  

 
Furthermore, 
 
  

 
So we now know how to take the expected value of a random variable, but let’s say we were 
interested in the expected value of the square of the random variable, or the cube, or so on. This 
brings us to the concept of the moments of a random variable.  
 
Definition 11 (Moments of a Random Variable). The k-th moment of a random variable X is E[Xk] ∀k 
∈ N.  
 
To make the computation of the moments of a random variable easier, we define a special Moment 
Generating Function.  
 
Definition 12 (Moment Generating Function). The moment generating function M(t) of a random 
variable X is defined for all real values of t by  

 
 
The moment generating function (MGF) has a few interesting properties which we will need to keep 
in mind throughout the paper. First, for independent random variables X and Y, the MGF satisfies 
MX+Y (t) = E[et(X+Y )] = E[etX · etY ] = Mx(t) · My(t). Second, all moments of a random variable can 
be obtained by differentiating the MGF and evaluating the derivative at 0. More precisely,  

 
Although I won’t prove this in general, it can be easily seen through induction as shown in the 
following demonstration.  
 
Demonstration 1.  

 
and when we evaluate M’(t) at t= 0, we get:  
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Which is the first moment of the random variable X.  
 
The use of MGFs, and in particular of the MGF of the standard normal distribution, will be key to 
the proof of the Central Limit Theorem. Hence, I compute the MGF of the standard normal 
distribution below.  
 

Example 2.  
Let Z be a unit normal random vaariable with mean 0 and variance 1.  

 
Step 2 is accomplished by simply inserting a normal random variable for Z and taking the expected 
value. Step 3 uses the rule ex+y = exeyto combine the exponents. Step 4 uses the complete the 
square technique. Step 5 pulls out et2/2from the integrand since that term is simply a constant. 
Step 6 uses the fact that we are integrating a probability distribution function previously shown to 
be equal to 1.  
 

Preparatory Results  
Determining probabilities of certain outcomes of a random variable becomes more complicated 
when we are given only the mean or both the mean and the variance. However, while exact 
probabilities are impossible to find, bounds on the probability can be derived. One such bound is 
given by Markov’s inequality.  
 
Lemma 3.1. Markov’s Inequality  
 
If X is a random variable that takes only nonnegative values, then for any value a > 0,  

 
Proof. Define a new random variable I such that  
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Case 1: If I = 1 then X ≥ a; therefore I ≤Xasince X ≥ 0 and a > 0. Case 2: If I = 0 then X < a but Xa ≥ 0 
since X ≥ 0 and a > 0. Thus, the inequality I ≤Xaholds in all cases.  
 
Next, we take the expected value of both sides, i.e. E[I] and E[ Xa], s.t.  

 
Clearly E[I] ≤ E[ Xa] since I ≤Xa  
 
Furthermore, E[I] = P( X ≥ a) since E[I] is just the sum the probabilities where X ≥ a. Hence, P(X ≥ a) 
≤E[X/a] . This proves Lemma 3.1.  
 
Thus, using Markov’s inequality, we can create a bound on the probability of a certain outcome 
given only the distribution’s mean. Furthermore, this result is integral to deriving other bounds on 
the probability distribution of a random variable, such as the bound given by Chebyshev’s inequality.  
Lemma 3.2. Chebyshev’s Inequality  
 
If X is a finite random variable with finite mean µ and variance σ2, then for any value k > 0,  

 
Proof. From Markov’s inequality we know that  

 
 

where X is any random variable that takes on only nonnegative values and a > 0. We can apply 
Markov’ inequality to the random variable (X − µ)2, which satisfies the necessary conditions. We 
get:  

 
 

Next, notice that (X − µ2) ≥ k2 ⇐⇒ |X − µ| ≥ k. Hence, whenever one of these inequalities is true so 
is the other inequality. In other words, the probability of either inequality being true is the same. 
Thus, we can swap one inequality for the other to get:  

 
 

Lastly, by definition of variance, E[(X − µ)2] = σ2, so we get:  
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This proves Lemma 3.2.  
In the next section of the paper, Chebyshev’s inequality will be used to prove the weak law of large 
numbers that states the conditions under which the average of a sequence of random variables 
converges to the expected average. This result will rely primarily on Chebyshev’s inequality by 
allowing the random variable X to be a sequence of random variables.  

 
Weak Law of Large Numbers and the Central Limit Theorem  
Theorem 4.1. The Weak Law of Large Numbers  
Let X1, X2, ... be a sequence of independent and identically distributed random variables, each 
having finite mean E[Xi] = µ and variance σ2. Then, for any   > 0,  

 
Proof. We see that,  

 
Furthermore,  

 
 

  

Now we treat  as a new random variable X. The new random variable X clearly satisfies 
the conditions for Chebyshev’s Inequality. Hence, we apply the lemma to get the following:   

 
As n → ∞, it then follows that  

 
 
This proves Theorem 3.1.  
 
The Weak Law of Large Numbers demonstrates that given a large aggregate of identical random 
variables, the average of the results obtained will approach the sample mean. Next, I will prove a 
restricted case of the Central Limit theorem that deals only with a standard normal random variable. 
This theorem is concerned with determining the conditions under which the sum of a large number 
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of random variables has a probability distribution that is approximately normal. The following 
Lemma is integral to the proof of the Central Limit theorem. This is a technical result and will not be 
proven in this paper. However, a proof of this can be found in Probability and Random Processes 
[1].  
 
Lemma 4.1. Let Z1, Z2, ... be a sequence of random variables having distribution functions FZn and 
moment generating functions MZns.t. n ≥ 1. Furthermore, let Z be a random variable having 
distribution function FZ and moment generating functions MZ. If MZn(t) → MZ for all t, then FZn(t) 
→ FZ(t) for all t at which FZ(t) is continuous.  
 
To see the relevance of this Lemma, let’s set Zn =Pni=1 √Xinwhere Xi are independent and identically 
distributed random variables and let Z be a normal random variable. Then, if we show  
 
that the MGF of Pni=1 √Xinapproaches the MGF of Z (which we previously calculated to be et2/2) 
as n → ∞, we simultaneously show that the probability distribution of Pni=1 √Xinapproaches the 
normal distribution as n → ∞. This is the method we will use to prove the Central Limit theorem.  
 
Theorem 4.2. The Central Limit Theorem   
Let X1, X2, ... be a sequence of independent and identically distributed random variables each 

having mean µ and variance σ2. Then the distribution of  tends to the standard  
normal as n → ∞. That is, for −∞ < a < ∞,  

 
Proof. We begin the proof with the assumption that µ = 0, σ2 = 1 and that the MGF of the Xi exists 
and is finite.  
 
We already know the MGF of a normal random variable, but we still need to compute the MGF of 

the sequence of random variables we are interested in:  
 

By definition of MGF, we can see that However, we are interested in 

the MGF of  Here is how we find the MGF:  
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Step 1 is accomplished by simple distribution. Step 2 uses the rule ex+y = ex·ey. Step 3 relies on the 
fact that the Xis are independent and therefore the E and the Qoperators are interchangeable. In 
Step 4 I simply substitute a previously calculated identity. And in Step 5 I simply rewrite the equation 
into a more accessible format.  
 

Now we define L(t) =log M(t) and evaluate  

 
 

 

Now we are ready to prove the Central Limit theorem by showing that 
∞. By taking the log of both sides, we can see that this is equivalent to showing nL(t/√n) → t2/2 as 
n → ∞. Hence, we compute:  
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Here, Step 1 was accomplished by L’Hopital’s rule since both the top and the bottom of the original 
fraction equaled 0. Step 2 simply reduces the fraction. Step 3 is again accomplished by L’Hopital’s 
rule since again both the top and the bottom of the reduced fraction equal 0. Step 4 reduces the 
equation. Step 5 uses the previously calculated value of L”(0) to give us the final result. Having 
shown this, we can now apply Lemma 3.3. to prove the Central Limit theorem for the case where µ 
= 0 and σ2 = 1.  
 
I will briefly illustrate the theorem with a simple application from investment. Consider an investor 
who chose a diversified portfolio with 100 stocks. We assume that possible yields of each stock are 
identically distributed(although in reality such an assumption would be difficult to satisfy). Then, 
using the Central Limit thorem, he can model the returns of this portfolio using the normal 
distribution.  
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Descriptive statistics: Measures of central tendency, dispersion, 
correlation and regression 

 
Introduction     
Statistics is a branch of science that deals with the collection, organisation, summarisation and 
analysis of data and drawing of inferences from these samples to the whole population.[1],[2] Thus, 
there are two broad categories of statistics: descriptive statistics and inferential statistics. 
Descriptive statistics describes the relationship between variables in a sample or population, 
whereas inferential statistics makes inferences about the population based on a random sample 
from that population. 
 
Descriptive statistics involves various methods that reduce large sets of data that are presented in 
the form of tables or graphs in order to characterise features of its distribution and are described 
as sums, averages, relationships and differences.[3] They are measured in terms of central location 
and of dispersion. Descriptive statistics are not 'decision' oriented. Pilot studies, for example, are 
descriptive. 
 
In inferential statistics, the summary data (used for descriptive statistics) are processed in order to 
estimate, or predict, characteristics of another (usually larger) group. That is, the tests 
extrapolate/infer sample data and generalise that to the larger population, usually with calculated 
degrees of certainty. The details of inferential statistics will be covered in the next article in this 
series of basic statistical considerations. 
 

Expression of Data in Descriptive Statistics     
The extent to which the descriptive observations cluster around a central location is described by 
the central tendency and the spread towards the extremes is described by the degree of dispersion. 

 
Measures of Central Tendency     

The measure of central tendency is a single value which best represents the characteristic of the 
data. Mean, median and mode are the three main measures of central tendency.[4] The mean is 
the arithmetic average value (μ), median the middle value and mode the most common value in a 
series of observations. 
 
The mean is highly influenced by the extreme variables. These extreme values are called outliers. 
For example, if thyromental distance with head in maximum extension of nine patients is 8.2, 8.7, 
8.4, 8.9, 8.2, 9.1, 8.5, 8.6 and 5.0 cm, the simplest approach is to rank the observations from lowest 
to highest: 5.0, 8.2, 8.2, 8.4, 8.5, 8.6, 8.7, 8.9 and 9.1 cm. Out of these values, the thyromental 
distance of 5.0 cm is an outlier. 
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Median is the middle value of a distribution in ranked data. Half of the variables are above and half 
of the values are below the median value. The mode is the most frequently occurring variable in a 
distribution.[2] The mean thyromental distance of the patients in the above example is 8.17 cm, 
whereas the median and mode are 8.5 and 8.2 cm, respectively. 
 

Measures of Dispersion     

The observed data may be dispersed away from the central value as opposed to those which are 
centrally distributed. They are expressed in terms of measures of dispersion (range, percentile, 
variance, standard deviation [SD], standard error [SE] and confidence interval [CI]). 
 
Range is the difference between the minimum and the maximum values in a sample (e.g., if 
thyromental distance with head in maximum extension in a sample of patients is 8.2, 8.7, 8.4, 8.9, 
8.2, 9.1, 8.5, 8.6 and 5.0 cm, the range is 5.0–9.1 cm). It describes the variability of distribution in a 
sample.[3] The range does not provide valuable information about the overall distribution of the 
data and is heavily affected by the outliers (e.g., 5.0 cm in the above example). 
 

Normal Distribution or Gaussian Distribution and Measures of Dispersion     

Most of the biological variables usually cluster around a central value, with symmetrical positive 
and negative deviations about this point. The more the deviation of value of the variable from the 
central point, the less frequently it is seen. The standard normal distribution curve is a symmetrical 
bell-shaped curve. In a normal distribution curve, about 68% of the values are within one SD of the 
mean. Around 95% of the values are within two SDs of the mean, and around 99% are within three 
SDs of the mean [Figure 1]. 

 
Figure 1: Symmetrical distribution (mean [μ], standard deviation [SD/σ]) 
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Variance gives a measure of the spread-out of the distribution of variables in a population.[5] It 
gives an indication of how close an individual observation clusters about the mean value. A large 
variance indicates that the data in the set are far from the mean and each other, whereas a small 
variance indicates that the data in the set are close to the mean. 
 
The variance of a sample is defined by: 

 
where s2 is the sample variance, x is the sample mean, xi is the ith element from the sample and n 
is the number of elements in the sample. 
 
The formula for the variance for a population has the value 'n' as the denominator. The expression 
'n − 1' it represents the degrees of freedom and is one less than the number of observations. 
 
Variance is measured in squared units. However, in order to make the interpretation of the data 
simple, the square root of variance is used. The positive square root of the variance is denoted by 
the SD defined by the following formula: 

 
where σ is the population SD, X is the population mean, Xi is the ith element from the population 
and N is the number of elements in the population.[6] 
 
The SD of a sample is defined by a slightly different formula: 
s = [Σ (xi − x)2/(n − 1)] 
 
where s is the sample SD, x is the sample mean, xi is the ith element from the sample and n is the 
number of elements in the sample.[6] 
 
For example, the interincisor distance of five patients undergoing laparoscopic cholecystectomy was 
45, 45, 35, 35 and 40 mm. 

                              

 
                                                        = 25  

 SD = √25 =5 
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