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Introduction 

 

In this chapter we are going to deal with areas enclosed by curves area between lines 

and arcs of circles, parabolas and ellipses (standard forms only) using integral 

technique: 

 

Area under Simple Curve: 

 

Consider the figure below, we can think of area under the curve as composed of large 

number of very thin vertical strips. Consider  

an arbitrary strip of height y and width dx, then dA (area of the elementary strip)= 

ydx, where, y = f(x). 

This area is called the elementary area which is located at an arbitrary position within 

the region which is specified by some value of x between a and b.  

 

                          
Fig.1a 

 

(i) Total area bounded by the curve � � ����, between the ordinates � � � and � �  �  ( Fig.1a) can be found by using definite integrals and 

represented as  

���� � � � ���
�
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                                              Fig.1b 

 

ii.If the curve is given as � �  ���� (Fig.1b) , then the area bounded by the given 

curve between � �  � and � �  � �� � �� can be represented as 

���� � � � ���
�

 

 

                   

                       

                                  Fig. 1c 

 

iii. If the curve is given as � �  ���� (Fig.1c) and ����  �  0, then the area 

bounded by the given curve between  � �  �  and � �  �  �� � ��  can be 

represented as 

 

���� �  !� �������
�

! 
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                                Fig.1d 

 

iv. If the curve is given as � �  ���� (Fig.1d) and some portion of curve lies 

above the x-axis and some below it such that �1 �  0 and �2 �  0, then the 

area bounded by the given curve between � �  � and � �  � �� � �� can be 

represented as 

 

Area= |A1|+A2 

 

 

Example:  Find the area enclosed by the ellipse  
$%
&% ' (%

)% � *. 
Solution:  Here we have, �,�, '  �,�, � 1 

or,  
-.
�. � 1 / 0.

�. 

or,    
-.
�. �  �.1 0.

�.  

or,    �, �  �.
�.  ��, / �,� 

or,  � � 23�.
�. �a, / x,� 

or, � � 2 �� 5�a, / x,� 

 We know that, 

 Ellipse is symmetrical about x-axis and y-axis. 

4



 

www.toppersnotes.com 

 

Fig.2a 

 Area of ellipse = 4 × 6 � ���7  

 = 46 �� 5�a, / x,����7  

 = 
8�� 6 5�a, / x,��7 �� 

 = 
8�� 9 0, 5�a, / x,� ' :.

, sin1; 0�<7
�

 

 =  
8�� 9=�, √�, / �, ' �.

, sin1; ��? / =7, √�, /  0 ' �.
, sin1;�0�? < 

 = 
8�� 90 ' �.

, sin1;�1� / 0 / 0< 

 = 
8�,  @  �.

, sin1;�1� 

 = 2ab × sin1;�1� 

 = 2ab × A 2⁄  

 = πab 

 

 

The area of the region bounded by a curve and a line: 

 

We will find the area of the region bounded by a line and a circle, a line and a 

parabola, a line and an ellipse. 

 

Example: Find the area of the region bounded by the parabola y2 = 2px, x2 = 2py.  

Solution:  

Given that, parabolas are y2 = 2px             …. (i)  

and            x2 = 2py                     …. (ii)  

Now, from equation (ii) we have  

y = x2 /2p  

Putting the value of y in equation (i), we have  

(x2 /2p)2 = 2px  
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x4 /4p2 = 2px  

x4 = 8p3x  

x4 – 8p3 x = 0  

x(x3 – 8p3 ) = 0  

So, x = 0 or x3 – 8p3 = 0 ⇒ x = 2p  

Now, the required area is  

 

 

 

 

 

Thus, the required area is 4/3 p2 sq. units. 

 

Example: Find the area of the region bounded by the curve y = x3 and y = x + 6 and x 

= 0.  

Solution:  

Given that curves are y = x3 , y = x + 6 and x = 0  

On solving y = x3 and y = x + 6, we get,  

x3 = x + 6  
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x3 – x – 6 = 0  

x2 (x - 2) + 2x(x - 2) + 3(x - 2) = 0  

(x - 2) (x2 + 2x + 3) = 0  

It’s seen that x2 + 2x + 3 = 0 has no real roots  

So, x = 2 is the only root for the above equation.  

So, the required area of the shaded region is given by 

 

 

 

 

 

Area between Two Curves: 

                                                                      

 

 Fig.2a 
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i. If two curves are given as � �  ���� and � �  ����,where ����  D  ���� in E�, �G (Fig 8.5), then  

���� � �E���� / ����G�
�

�� 

 

 

Fig. 2b 

 

ii. If ����  D  ���� in E�, HG and ����  D  ���� in EH, �G (Fig 8.6), then total area 

A can be given as  

Total Area = Area of the region ACBDA + Area of the region BPRQB  

 

� �  �E���� / ����G�� ' �E���� / ����G���
I

I
�

 

 

Example: Find the area of the region bounded by the curves y2 = 9x, y = 3x.  

Solution:  

Given curves are y2 = 9x and y = 3x  

Now, solving the two equations we have  

(3x)2 = 9x  

9x2 = 9x  

9x2 – 9x = 0 ⇒ 9x(x - 1) = 0  

Thus, x = 0, 1  

So, the area of the shaded region is given by  

= ar(region OAB) – ar (Δ OAB) 
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Thus, the required area is ½ sq.units.  
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Questions and Answers: 

 

1 Mark each: 

 

1. Find the area bounded by the curve y = sin x between 0 and π. 

Solution: 

Here we have, curve y = sin x 

 

 

Area bounded by curve OAB 

 

= – [cos π – cos 0] 

= -(-1 -1) 

= 2 square units 

 

2. Find the area of the region bounded by the two parabolas y = x2 and y2 = x. 

Solution: 

We have, two parabolas y = x2 and y2 = x. 

The point of intersection of these two parabolas is O (0, 0) and A (1, 1) as shown in 

the figure below 
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And, 

y2 = x 

y = √x = f(x) 

y = x2 = g(x), where, f (x) ≥ g (x) in [0, 1]. 

Area of the shaded region 

 

= (⅔) – (⅓) 

= ⅓ 

Therefore, the required area is ⅓ square units. 

 

3. Find the area enclosed by the ellipse x2/a2 + y2/b2 =1. 

Solution: 

Here, we have, 
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And, We know that, Ellipse is symmetrical about both x-axis and y-axis. 

So, Area of ellipse = 4 × Area of AOB 

 

Substituting the positive value of y in the above expression since OAB lies in the first 

quadrant. 

 

= 2ab × sin-1(1) 

= 2ab × π/2 

= πab 
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4. Find the area bounded by the y-axis, y = cos x and y= sin x when  

Solution:  

 

Graph of both the functions will intersect at the point  

B . 

 

So, the required Shaded Area= 

 

 

=  

square units. 

 

5. Find the area bounded by the curve y = x|x|, x- axis and the ordinates x = -1 and 

x = 1 

Equation of the curve is  
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. if                 ……….(1) 

And, if            ………..(2) 

Required area = Area ONBO + Area OAMO 

 

= 2/3 sq. units  

 

6. Find the area of the circle exterior to the parabola  

Solution: 

We know, Equation of the circle is                     …..(1)  

Thus, radius of circle is 4  

This circle is symmetrical about x-axis and y- axis.  

 

Here two points of intersection are B  

and B’  

 

 

 

Required area = Area of circle – Area of circle interior to the parabola  

14



 

www.toppersnotes.com 

= πr2 - Area OBAB’O  

= 16π - 2 x Area OBACO  

= 16π - 2[Area OBCO + Area BACB]  

 

 

 

 

 

 

square units.  

 

7. Find the area of the region bounded by y = √x and y = x.  

Solution:  

Given that, equations of curve y = √x and line y = x  

Solving the equations y = √x ⇒ y2 = x and y = x, we get  

x2 = x  

x2 – x = 0  

x(x - 1) = 0  

So,  

x = 0, 1  

Now, the required area of the shaded region  
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